login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A305102 G.f.: Sum_{k>=1} x^k/(1-x^k) * Product_{k>=1} (1+x^k)/(1-x^k). 8
0, 1, 4, 10, 23, 46, 88, 158, 274, 459, 748, 1190, 1858, 2846, 4292, 6384, 9373, 13602, 19536, 27782, 39158, 54740, 75928, 104562, 143036, 194423, 262704, 352988, 471778, 627382, 830352, 1093994, 1435132, 1874920, 2439832, 3163020, 4085825, 5259602, 6748136 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Convolution of A006128 and A000009.

Convolution of A305082 and A000041.

Convolution of A000005 and A015128.

a(n) is the number of non-overlined parts in all overpartitions of n. - Joerg Arndt, Jun 18 2020

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..10000

FORMULA

a(n) ~ exp(Pi*sqrt(n)) * (2*gamma + log(4*n/Pi^2)) / (8*Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620.

MATHEMATICA

nmax = 40; CoefficientList[Series[Sum[x^k/(1-x^k), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

PROG

(PARI) my(N=44, q='q+O('q^N)); Vec( prod(k=1, N, (1+q^k)/(1-q^k)) * sum(k=1, N, 1*q^k/(1-q^k)) ) \\ Joerg Arndt, Jun 18 2020

CROSSREFS

Cf. A006128, A015723, A209423, A305082, A305101.

Cf. A335651 and A335666.

Sequence in context: A002071 A024980 A002766 * A008268 A084446 A209815

Adjacent sequences:  A305099 A305100 A305101 * A305103 A305104 A305105

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, May 25 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 12:51 EST 2021. Contains 349394 sequences. (Running on oeis4.)