login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Mirror of the triangle A193921.
2

%I #22 Jan 12 2024 10:04:27

%S 1,1,1,2,2,1,4,4,3,2,7,7,6,5,3,12,12,11,10,8,5,20,20,19,18,16,13,8,33,

%T 33,32,31,29,26,21,13,54,54,53,52,50,47,42,34,21,88,88,87,86,84,81,76,

%U 68,55,34,143,143,142,141,139,136,131,123,110,89,55,232,232,231

%N Mirror of the triangle A193921.

%C A193922 is obtained by reversing the rows of the triangle A193921.

%C Also, triangle read by rows: T(n,k) = Fibonacci(n+2) - Fibonacci(k+1) with T(0,0) = 1, 0 <= k <= n. - _Arkadiusz Wesolowski_, Aug 05 2012

%H Arkadiusz Wesolowski, <a href="/A193922/b193922.txt">Rows n = 0..140 of triangle, flattened</a>

%F Write w(n,k) for the triangle at A193921. The triangle at A193922 is then given by w(n,n-k).

%F G.f.: 1-(x*y-y-x)/((x^2+x-1)*(y^2+y-1)). - _Vladimir Kruchinin_, Jan 12 2024

%e First six rows:

%e 1

%e 1 1

%e 2 2 1

%e 4 4 3 2

%e 7 7 6 5 3

%e 12 12 11 10 8 5

%t z = 12;

%t p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];

%t q[n_, x_] := x*q[n - 1, x] + 1; q[0, n_] := 1;

%t t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;

%t w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1

%t g[n_] := CoefficientList[w[n, x], {x}]

%t TableForm[Table[Reverse[g[n]], {n, -1, z}]]

%t Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193921 *)

%t TableForm[Table[g[n], {n, -1, z}]]

%t Flatten[Table[g[n], {n, -1, z}]] (* this sequence *)

%t Factor[w[7, x]]

%t Factor[w[8, x]]

%t Table[Expand[p[n, x]], {n, 0, 4}]

%t Table[Expand[q[n, x]], {n, 0, 4}]

%t Prepend[Flatten@Table[Fibonacci[n + 2] - Fibonacci[k + 1], {n, 10}, {k, 0, n}], 1] (* _Arkadiusz Wesolowski_, Aug 05 2012 *)

%Y Cf. A193921.

%K nonn,tabl

%O 0,4

%A _Clark Kimberling_, Aug 09 2011