login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integers x such that 1 <= x <= n and gcd(x,n) = gcd(x+2,n) = gcd(x+6,n) = 1.
5

%I #49 Feb 28 2024 10:49:12

%S 1,1,1,2,2,1,4,4,3,2,8,2,10,4,2,8,14,3,16,4,4,8,20,4,10,10,9,8,26,2,

%T 28,16,8,14,8,6,34,16,10,8,38,4,40,16,6,20,44,8,28,10,14,20,50,9,16,

%U 16,16,26,56,4,58,28,12,32,20,8,64,28,20,8,68,12,70,34,10,32,32,10,76,16

%N Number of integers x such that 1 <= x <= n and gcd(x,n) = gcd(x+2,n) = gcd(x+6,n) = 1.

%C Equivalently, a(n) is the number of "admissible" residue classes modulo n which are allowed (by divisibility considerations) to contain infinitely many initial primes in prime triples (p, p+2, p+6). This sequence also gives the number of "admissible" residue classes (mod n) for initial primes p in the other type of prime triples: (p,p+4,p+6). This is a generalization of Euler's totient function (the number of residue classes modulo n containing infinitely many primes).

%C If n is prime, a(n) = max(1,n-3).

%D V. A. Golubev, Sur certaines fonctions multiplicatives et le problème des jumeaux. Mathesis 67 (1958), 11-20.

%D József Sándor and Borislav Crstici, Handbook of Number Theory II, Kluwer, 2004, p. 289.

%H Amiram Eldar, <a href="/A319534/b319534.txt">Table of n, a(n) for n = 1..10000</a>

%H V. A. Golubev, <a href="http://dml.cz/dmlcz/117061">A generalization of the functions phi(n) and pi(x)</a>, Časopis pro pěstování matematiky 78 (1953), 47-48.

%H V. A. Golubev, <a href="http://dml.cz/dmlcz/117442">Exact formulas for the number of twin primes and other generalizations of the function pi(x)</a>, Časopis pro pěstování matematiky 87 (1962), 296-305.

%H Alexei Kourbatov and Marek Wolf, <a href="http://arxiv.org/abs/1901.03785">Predicting maximal gaps in sets of primes</a>, arXiv preprint arXiv:1901.03785 [math.NT], 2019.

%F Multiplicative with a(p^e) = p^(e-1) if p = 2,3; (p-3)*p^(e-1) if p > 3.

%F Sum_{k=1..n} a(k) ~ c * n^2, where c = (7/24) * Product_{p prime >= 5} (1 - 3/p^2) = 0.2196022165... . - _Amiram Eldar_, Nov 01 2022

%e All initial primes p in prime triples (p, p+2, p+6) are congruent to 5 mod 6; that is, there is only one "admissible" residue class mod 6; therefore a(6) = 1.

%t a[n_] := Sum[Boole[CoprimeQ[n, x] && CoprimeQ[n, x+2] && CoprimeQ[n, x+6]], {x, 1, n}]; Array[a, 80] (* _Jean-François Alcover_, Jan 29 2019 *)

%t f[p_, e_] := If[p < 5, p^(e-1), (p-3)*p^(e-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Jan 22 2020 *)

%o (PARI) phi3(n) = sum(x=1, n, (gcd(n, x)==1) && (gcd(n, x+2)==1) && (gcd(n, x+6)==1));

%o for(n=1, 80, print1(phi3(n)", "))

%Y Cf. similar generalizations of totient for k-tuples: A002472 (k=2), A319516 (k=4), A321029 (k=5), A321030 (k=6).

%K nonn,mult

%O 1,4

%A _Alexei Kourbatov_, Sep 22 2018