login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360440
Square array read by antidiagonals upwards: T(n,k), n>=0, k>=0, is the number of ways of choosing nonnegative numbers for k indistinguishable A063008(n)-sided dice so that it is possible to roll every number from 0 to (A063008(n))^k-1.
0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 7, 15, 1, 1, 1, 1, 10, 71, 105, 1, 1, 1, 1, 42, 280, 1001, 945, 1, 1, 1, 1, 115, 3660, 15400, 18089, 10395, 1, 1, 1, 1, 35, 20365, 614040, 1401400, 398959, 135135, 1, 1
OFFSET
0,13
COMMENTS
The number of configurations depends on the number of sides on the dice only through its prime signature. A063008 provides a canonical representative of each prime signature.
Also the number of Krasner factorizations of (x^(A063008(n))^k)-1) / (x-1) into k polynomials each having A063008(n) nonzero terms all with coefficient +1. (Krasner and Ranulac, 1937)
LINKS
M. Krasner and B. Ranulac, Sur une propriété des polynomes de la division du cercle, Comptes Rendus Académie des Sciences Paris, 240:397-399, 1937.
Matthew C. Lettington and Karl Michael Schmidt, Divisor Functions and the Number of Sum Systems, arXiv:1910.02455 [math.NT], 2019.
FORMULA
T(n,k) = f(A063008(n),k), where f(n,k) is the table given by A360098.
EXAMPLE
A063008(2) = 4. There are 3 ways to assign numbers to two 4-sided dice:
{{0, 1, 2, 3}, {0, 4, 8, 12}},
{{0, 1, 8, 9}, {0, 2, 4, 6}},
{{0, 1, 4, 5}, {0, 2, 8, 10}}.
The table begins:
1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 ...
1 1 3 15 105 945 10395 ...
1 1 7 71 1001 18089 398959 ...
1 1 10 280 15400 1401400 190590400 ...
1 1 42 3660 614040 169200360 69444920160 ...
1 1 115 20365 6891361 3815893741 3141782433931 ...
1 1 35 5775 2627625 2546168625 4509264634875 ...
1 1 230 160440 299145000 1175153779800 8396156461492800 ...
...
The rows shown enumerate configurations for dice of 1, 2, 4, 6, 8, 12, 30, 16, and 24 sides, which represent the prime signatures {}, {1}, {2}, {1,1}, {3}, {2,1}, {1,1,1}, {4}, and {3,1}.
PROG
(SageMath)
@cached_function
def r(i, M):
kminus1 = len(M)
u = tuple([1 for j in range(kminus1)])
if i > 1 and M == u:
return(1)
elif M != u:
divList = divisors(i)[:-1]
return(sum(r(M[j], tuple(sorted(M[:j]+tuple([d])+M[j+1:])))\
for d in divList for j in range(kminus1)))
def f(n, k):
if n == 1 or k == 0:
return(1)
else:
return(r(n, tuple([n for j in range(k-1)]))) / factorial(k-1)
# The following function produces the top left corner of the table:
def TArray(maxn, maxk):
retArray = []
primesList = []
ptnSum = 0
ptnItr = Partitions(ptnSum)
ptn = ptnItr.first()
n = 0
while n <= maxn:
if ptn == None:
primesList.append(Primes()[ptnSum])
ptnSum = ptnSum + 1
ptnItr = Partitions(ptnSum)
ptn = ptnItr.first()
prdct = prod(primesList[j]^ptn[j] for j in range(len(ptn)))
retArray.append([f(prdct, k) for k in range(maxk+1)])
n = n + 1
ptn = ptnItr.next(ptn)
return(retArray)
CROSSREFS
The concatenation of all prime signatures, listed in the order that corresponds to the rows of T(n,k), is A080577.
T(3,k) is |A002119(k)]. Starting with k = 1, T(1,k), T(2,k), T(4,k), and T(7,k) are given by columns 1-4 of A060540.
Row n is row A063008(n) of A360098.
Sequence in context: A334549 A333901 A054724 * A349350 A061494 A360161
KEYWORD
nonn,tabl
AUTHOR
William P. Orrick, Feb 19 2023
STATUS
approved