OFFSET
0,13
COMMENTS
T(n,k) is the number of ordered factorizations of m^n into n factors, where m is a product of exactly k distinct primes and each factor is a product of k primes (counted with multiplicity).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..405 (antidiagonals n=0..27)
FORMULA
T(n,k) = T(k,n).
EXAMPLE
Array begins:
=======================================================
n\k | 0 1 2 3 4 5 6
----+--------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 ...
2 | 1 1 3 7 19 51 141 ...
3 | 1 1 7 55 415 3391 28681 ...
4 | 1 1 19 415 10147 261331 7100821 ...
5 | 1 1 51 3391 261331 22069251 1985311701 ...
6 | 1 1 141 28681 7100821 1985311701 602351808741 ...
...
The T(3,2) = 7 matrices are:
[1 1] [1 1] [1 1] [2 0] [2 0] [0 2] [0 2]
[1 1] [2 0] [0 2] [1 1] [0 2] [1 1] [2 0]
[1 1] [0 2] [2 0] [0 2] [1 1] [2 0] [1 1]
PROG
(PARI)
T(n, k)={
local(M=Map(Mat([k, 1])));
my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
my(recurse(h, p, q, v, e) = if(!p, if(!e, acc(q, v)), my(i=poldegree(p), t=pollead(p)); self()(n, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(j=1, min(t, e\m), self()(if(j==t, n, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e-j*m)))));
for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n, src[i, 1], 0, src[i, 2], k))); vecsum(Mat(M)[, 2])
}
for(n=0, 7, for(k=0, 7, print1(T(n, k), ", ")); print)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Apr 18 2020
STATUS
approved