login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by antidiagonals: T(n,k) is the number of n X k nonnegative integer matrices with all column sums n and row sums k.
13

%I #11 Apr 21 2020 19:28:43

%S 1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,7,7,1,1,1,1,19,55,19,1,1,1,1,51,

%T 415,415,51,1,1,1,1,141,3391,10147,3391,141,1,1,1,1,393,28681,261331,

%U 261331,28681,393,1,1,1,1,1107,248137,7100821,22069251,7100821,248137,1107,1,1

%N Array read by antidiagonals: T(n,k) is the number of n X k nonnegative integer matrices with all column sums n and row sums k.

%C T(n,k) is the number of ordered factorizations of m^n into n factors, where m is a product of exactly k distinct primes and each factor is a product of k primes (counted with multiplicity).

%H Andrew Howroyd, <a href="/A333901/b333901.txt">Table of n, a(n) for n = 0..405</a> (antidiagonals n=0..27)

%F T(n,k) = T(k,n).

%e Array begins:

%e =======================================================

%e n\k | 0 1 2 3 4 5 6

%e ----+--------------------------------------------------

%e 0 | 1 1 1 1 1 1 1 ...

%e 1 | 1 1 1 1 1 1 1 ...

%e 2 | 1 1 3 7 19 51 141 ...

%e 3 | 1 1 7 55 415 3391 28681 ...

%e 4 | 1 1 19 415 10147 261331 7100821 ...

%e 5 | 1 1 51 3391 261331 22069251 1985311701 ...

%e 6 | 1 1 141 28681 7100821 1985311701 602351808741 ...

%e ...

%e The T(3,2) = 7 matrices are:

%e [1 1] [1 1] [1 1] [2 0] [2 0] [0 2] [0 2]

%e [1 1] [2 0] [0 2] [1 1] [0 2] [1 1] [2 0]

%e [1 1] [0 2] [2 0] [0 2] [1 1] [2 0] [1 1]

%o (PARI)

%o T(n, k)={

%o local(M=Map(Mat([k, 1])));

%o my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));

%o my(recurse(h, p, q, v, e) = if(!p, if(!e, acc(q, v)), my(i=poldegree(p), t=pollead(p)); self()(n, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(j=1, min(t, e\m), self()(if(j==t, n, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e-j*m)))));

%o for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n, src[i, 1], 0, src[i, 2], k))); vecsum(Mat(M)[, 2])

%o }

%o for(n=0, 7, for(k=0, 7, print1(T(n,k), ", ")); print)

%Y Columns k=0..9 are A000012, A000012, A002426, A172743, A172816, A172868, A172904, A172931, A172947, A172961.

%Y Main diagonal is A110058.

%Y Cf. A257462, A257493.

%K nonn,tabl

%O 0,13

%A _Andrew Howroyd_, Apr 18 2020