login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333903
Number of directed Hamiltonian paths in a 2*n X n grid starting at the upper left corner and finishing in the lower left corner.
1
1, 1, 16, 264, 117852, 43399371, 443064195958, 3575671586791915, 831655228913958996424, 147303585340262824414389642, 774577888161337889995061257722609, 3015734636186832309974653370241824509796, 356606519352227259565296610082412177642016167446
OFFSET
1,3
FORMULA
a(n) = A271592(2*n,n).
EXAMPLE
a(1) = 1;
S
|
*
|
E
a(2) = 1;
S--*
|
*--*
|
*--*
|
E--*
a(3) = 16;
S--*--* S--*--* S--*--* S--*--*
| | | |
*--*--* *--*--* *--*--* *--*--*
| | | |
*--*--* *--*--* * *--* * *--*
| | | | | | | |
*--*--* *--* * *--* * * * *
| | | | | | | |
*--*--* * * * *--* * *--* *
| | | | | | | |
E--*--* E *--* E *--* E--*--*
S--*--* S--*--* S--*--* S--*--*
| | | |
*--* * *--* * *--* * *--* *
| | | | | | | | | | | |
* *--* * *--* * * * * * *
| | | | | | | |
*--*--* * *--* * *--* * * *
| | | | | | | |
*--* * *--* * *--*--* * * *
| | | | | | | |
E *--* E--*--* E--*--* E *--*
S *--* S *--* S *--* S *--*
| | | | | | | | | | | |
*--* * *--* * *--* * *--* *
| | | |
*--*--* *--*--* *--* * *--* *
| | | | | | | |
*--*--* * *--* * *--* * * *
| | | | | | | |
*--* * *--* * *--*--* * * *
| | | | | | | |
E *--* E--*--* E--*--* E *--*
S *--* S *--* S *--* S *--*
| | | | | | | | | | | |
* * * * * * * * * * * *
| | | | | | | | | | | |
*--* * *--* * * * * * * *
| | | | | | | |
*--*--* *--* * *--* * * * *
| | | | | | | |
*--*--* * * * *--* * *--* *
| | | | | | | |
E--*--* E *--* E *--* E--*--*
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333903(n):
universe = tl.grid(n - 1, 2 * n - 1)
GraphSet.set_universe(universe)
start, goal = 1, 2 * n
paths = GraphSet.paths(start, goal, is_hamilton=True)
return paths.len()
print([A333903(n) for n in range(1, 8)])
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 09 2020
EXTENSIONS
a(9), a(11), a(13) from Seiichi Manyama
a(8), a(10), a(12), a(14)-a(18) from Ed Wynn, Jun 28 2023
STATUS
approved