login
A000232
Construct a triangle as in A036262. Sequence is one less than the position of the first number larger than 2 in the n-th row (n-th difference).
(Formerly M2718 N1089)
3
3, 8, 14, 14, 25, 24, 23, 22, 25, 59, 98, 97, 98, 97, 174, 176, 176, 176, 176, 291, 290, 289, 740, 874, 873, 872, 873, 872, 871, 870, 869, 868, 867, 866, 2180, 2179, 2178, 2177, 2771, 2770, 2769, 2768, 2767, 2766, 2765, 2764, 2763, 2763, 2763, 2763, 3366, 4208, 4207
OFFSET
1,1
COMMENTS
Related to Gilbreath conjecture.
REFERENCES
W. Sierpiński, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 35.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Chris Caldwell, Gilbreath's conjecture
Albert N. Debono, NUMBERS AND COMPUTERS (11)
R. B. Killgrove and K. E. Ralston, On a conjecture concerning the primes, Math. Comp., 13 (1959), 121-122.
Eric Weisstein's World of Mathematics, Gilbreath's Conjecture
FORMULA
a(n) = A036277(n) - 1. - T. D. Noe, Feb 03 2007
MAPLE
A000232 := proc(n)
local k;
for k from 1 do
if A036262(n, k) > 2 then
return k-1 ;
end if;
end do:
end proc:
seq(A000232(n), n=1..40) ; # R. J. Mathar, May 10 2023
MATHEMATICA
max = 10^4; triangle = NestList[Abs[Differences[#]] &, Prime[Range[max]], max]; a[n_] := (p = Position[triangle[[n + 1]], k_ /; k > 2, 1, 1]; If[p == {}, Nothing, p[[1, 1]] - 1]); Table[a[n], {n, 1, Sqrt[max]}] (* Jean-François Alcover, Feb 06 2016 *)
CROSSREFS
Cf. A001549.
Sequence in context: A366071 A305179 A106386 * A375292 A361363 A067789
KEYWORD
nonn
EXTENSIONS
Edited by Robert G. Wilson v, Aug 18 2002
More terms from Jean-François Alcover, Feb 06 2016
STATUS
approved