OFFSET
1,1
COMMENTS
Related to Gilbreath conjecture.
REFERENCES
W. Sierpiński, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 35.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n=1..274
Chris Caldwell, Gilbreath's conjecture
Albert N. Debono, NUMBERS AND COMPUTERS (11)
R. B. Killgrove and K. E. Ralston, On a conjecture concerning the primes, Math. Comp., 13 (1959), 121-122.
Eric Weisstein's World of Mathematics, Gilbreath's Conjecture
MAPLE
A000232 := proc(n)
local k;
for k from 1 do
if A036262(n, k) > 2 then
return k-1 ;
end if;
end do:
end proc:
seq(A000232(n), n=1..40) ; # R. J. Mathar, May 10 2023
MATHEMATICA
max = 10^4; triangle = NestList[Abs[Differences[#]] &, Prime[Range[max]], max]; a[n_] := (p = Position[triangle[[n + 1]], k_ /; k > 2, 1, 1]; If[p == {}, Nothing, p[[1, 1]] - 1]); Table[a[n], {n, 1, Sqrt[max]}] (* Jean-François Alcover, Feb 06 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Robert G. Wilson v, Aug 18 2002
More terms from Jean-François Alcover, Feb 06 2016
STATUS
approved