Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2685 N1075 #151 Jun 07 2023 11:51:45
%S 2,3,7,23,89,139,199,113,1831,523,887,1129,1669,2477,2971,4297,5591,
%T 1327,9551,30593,19333,16141,15683,81463,28229,31907,19609,35617,
%U 82073,44293,43331,34061,89689,162143,134513,173359,31397,404597,212701,188029,542603,265621,461717,155921,544279,404851,927869,1100977,360653,604073
%N a(0)=2; for n>=1, a(n) = smallest prime p such that there is a gap of exactly 2n between p and next prime, or -1 if no such prime exists.
%C p + 1 = A045881(n) starts the smallest run of exactly 2n-1 successive composite numbers. - _Lekraj Beedassy_, Apr 23 2010
%C Weintraub gives upper bounds on a(252), a(255), a(264), a(273), and a(327) based on a search from 1.1 * 10^16 to 1.1 * 10^16 + 1.5 * 10^9, probably performed on a 1970s microcomputer. - _Charles R Greathouse IV_, Aug 26 2022
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Hugo Pfoertner, <a href="/A000230/b000230.txt">Table of n, a(n) for n = 0..672</a>, extracted from T. Olivera e Silva's webpage.
%H A. Booker, <a href="https://t5k.org/nthprime">The Nth Prime Page</a>
%H L. J. Lander and T. R. Parkin, <a href="http://dx.doi.org/10.1090/S0025-5718-1967-0230677-4">On the first appearance of prime differences</a>, Math. Comp., 21 (1967), 483-488.
%H Thomas R. Nicely, <a href="https://faculty.lynchburg.edu/~nicely/gaps/gaplist.html">First occurrence prime gaps</a> [For local copy see A000101]
%H Tomás Oliveira e Silva, <a href="http://sweet.ua.pt/tos/gaps.html">Gaps between consecutive primes</a>
%H J. Thonnard, <a href="http://www.proftnj.com/calcprem.htm">Les nombres premiers (Primality check; Closest next prime; Factorizer)</a>
%H Sol Weintraub, <a href="https://doi.org/10.1090/S0025-5718-1981-0595062-1">A large prime gap</a>, Mathematics of Computation Vol. 36, No. 153 (Jan 1981), p. 279.
%H J. Young and A. Potler, <a href="http://dx.doi.org/10.1090/S0025-5718-1989-0947470-1">First occurrence prime gaps</a>, Math. Comp., 52 (1989), 221-224.
%H Yitang Zhang, <a href="https://doi.org/10.4007/annals.2014.179.3.7">Bounded gaps between primes</a>, Annals of Mathematics, Volume 179 (2014), Issue 3, pp. 1121-1174.
%H <a href="/index/Pri#gaps">Index entries for primes, gaps between</a>
%F a(n) = A000040(A038664(n)). - _Lekraj Beedassy_, Sep 09 2006
%e The following table, based on a very much larger table in the web page of Tomás Oliveira e Silva (see link) shows, for each gap g, P(g) = the smallest prime such that P(g)+g is the smallest prime number larger than P(g);
%e * marks a record-holder: g is a record-holder if P(g') > P(g) for all (even) g' > g, i.e., if all prime gaps are smaller than g for all primes smaller than P(g); P(g) is a record-holder if P(g') < P(g) for all (even) g' < g.
%e This table gives rise to many sequences: P(g) is A000230, the present sequence; P(g)* is A133430; the positions of the *'s in the P(g) column give A100180, A133430; g* is A005250; P(g*) is A002386; etc.
%e -----
%e g P(g)
%e -----
%e 1* 2*
%e 2* 3*
%e 4* 7*
%e 6* 23*
%e 8* 89*
%e 10 139*
%e 12 199*
%e 14* 113
%e 16 1831*
%e 18* 523
%e 20* 887
%e 22* 1129
%e 24 1669
%e 26 2477*
%e 28 2971*
%e 30 4297*
%e 32 5591*
%e 34* 1327
%e 36* 9551*
%e ........
%e The first time a gap of 4 occurs between primes is between 7 and 11, so a(2)=7 and A001632(2)=11.
%t Join[{2}, With[{pr = Partition[Prime[Range[86000]], 2, 1]}, Transpose[ Flatten[ Table[Select[pr, #[[2]] - #[[1]] == 2n &, 1], {n, 50}], 1]][[1]]]] (* _Harvey P. Dale_, Apr 20 2012 *)
%o (PARI) a(n)=my(p=2);forprime(q=3,,if(q-p==2*n,return(p));p=q) \\ _Charles R Greathouse IV_, Nov 20 2012
%o (Perl) use ntheory ":all"; my($l,$i,@g)=(2,0); forprimes { $g[($_-$l) >> 1] //= $l; while (defined $g[$i]) { print "$i $g[$i]\n"; $i++; } $l=$_; } 1e10; # _Dana Jacobsen_, Mar 29 2019
%o (Python)
%o import numpy
%o from sympy import sieve as prime
%o aupto = 50
%o A000230 = np.zeros(aupto+1, dtype=object)
%o A000230[0], it = 2, 2
%o while all(A000230) == 0:
%o gap = (prime[it+1] - prime[it]) // 2
%o if gap <= aupto and A000230[gap] == 0: A000230[gap] = prime[it]
%o it += 1
%o print(list(A000230)) # _Karl-Heinz Hofmann_, Jun 07 2023
%Y A001632(n) = 2n + a(n) = nextprime(a(n)).
%Y Cf. A001223, A002386, A005250, A045881, A038664.
%Y Cf. A100964 (least prime number that begins a prime gap of at least 2n).
%Y Cf. also A133429 (records), A133430, A100180, A226657, A229021, A229028, A229030, A229033, A229034.
%K nonn,nice
%O 0,1
%A _N. J. A. Sloane_
%E a(29)-a(37) from _Jud McCranie_, Dec 11 1999
%E a(38)-a(49) from Robert A. Stump (bee_ess107(AT)yahoo.com), Jan 11 2002
%E "or -1 if ..." added to definition at the suggestion of Alexander Wajnberg by _N. J. A. Sloane_, Feb 02 2020