The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A342150 Primes p such that three of p+10, p+20, p+30 and p+40 are prime. 1
 3, 7, 13, 31, 43, 73, 97, 127, 241, 307, 349, 379, 409, 547, 577, 643, 937, 1009, 1021, 1249, 1399, 1597, 1627, 1987, 2341, 2437, 2647, 2689, 2887, 3079, 3517, 3583, 3793, 3823, 4201, 4231, 4243, 4483, 5839, 6091, 6133, 6247, 6679, 6793, 6961, 7477, 7507, 8233, 10303, 12487, 13219, 13411, 13681 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Except for p=3, the three primes must be p+10, p+30 and p+40, because one of p, p+10, p+20 is divisible by 3, and one of p+20, p+30 and p+40 is divisible by 3. All terms except 3 are == 1 (mod 3). LINKS Robert Israel, Table of n, a(n) for n = 1..10000 EXAMPLE a(3) = 13 is a term because 13, 23, 43 and 53 are all prime. MAPLE R:= 3: count:= 1: for p from 7 by 6 while count < 300 do    if andmap(isprime, [p, p+10, p+30, p+40]) then      count:= count+1; R:= R, p    fi od: R; PROG (Python) from sympy import isprime, primerange def ok(p): return sum(isprime(p+i*10) for i in range(1, 5)) >= 3 def aupto(lim): return [p for p in primerange(1, lim+1) if ok(p)] print(aupto(13681)) # Michael S. Branicky, Mar 02 2021 CROSSREFS Sequence in context: A336801 A162869 A079018 * A002383 A163418 A309738 Adjacent sequences:  A342145 A342146 A342147 * A342151 A342152 A342153 KEYWORD nonn AUTHOR J. M. Bergot and Robert Israel, Mar 01 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 18:53 EDT 2021. Contains 343050 sequences. (Running on oeis4.)