OFFSET
1,4
COMMENTS
Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.
Also the number of distinct twills of period n. [Grünbaum and Shephard]
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1000
B. Grünbaum and G. C. Shephard, Satins and twills: an introduction to the geometry of fabrics, Math. Mag., 53 (1980), 139-161. See Theorem 2. [From N. J. A. Sloane, Jul 13 2011]
FORMULA
a(n) = A000011(n) - 1.
For an explicit formula see the Maple program.
MAPLE
with(numtheory);
rho:=n->(3+(-1)^n)/2;
f:=n->2^((n+rho(n))/2-2) + (1/(4*n))*(add(phi(d)*rho(d)*2^(n/d), d in divisors(n))) - 1;
# N. J. A. Sloane, Jul 13 2011
PROG
(PARI) a(n) = {if(n<1, 0, 2^(n\2-1) - 1 + sumdiv(n, k, eulerphi(2*k) * 2^(n/k)) / (4*n))}; \\ Andrew Howroyd, Oct 24 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms a(32) and beyond from Andrew Howroyd, Oct 24 2019
STATUS
approved