login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A056357
Number of bracelet structures using exactly two different colored beads.
7
0, 1, 1, 3, 3, 7, 8, 17, 22, 43, 62, 121, 189, 361, 611, 1161, 2055, 3913, 7154, 13647, 25481, 48733, 92204, 176905, 337593, 649531, 1246862, 2405235, 4636389, 8964799, 17334800, 33588233, 65108061, 126390031, 245492243, 477353375, 928772649, 1808676325
OFFSET
1,4
COMMENTS
Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.
Also the number of distinct twills of period n. [Grünbaum and Shephard]
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
B. Grünbaum and G. C. Shephard, Satins and twills: an introduction to the geometry of fabrics, Math. Mag., 53 (1980), 139-161. See Theorem 2. [From N. J. A. Sloane, Jul 13 2011]
FORMULA
a(n) = A000011(n) - 1.
For an explicit formula see the Maple program.
MAPLE
with(numtheory);
rho:=n->(3+(-1)^n)/2;
f:=n->2^((n+rho(n))/2-2) + (1/(4*n))*(add(phi(d)*rho(d)*2^(n/d), d in divisors(n))) - 1;
# N. J. A. Sloane, Jul 13 2011
PROG
(PARI) a(n) = {if(n<1, 0, 2^(n\2-1) - 1 + sumdiv(n, k, eulerphi(2*k) * 2^(n/k)) / (4*n))}; \\ Andrew Howroyd, Oct 24 2019
CROSSREFS
Column 2 of A152176.
Cf. A056295.
Sequence in context: A108046 A286110 A116157 * A288728 A213942 A144554
KEYWORD
nonn
EXTENSIONS
Terms a(32) and beyond from Andrew Howroyd, Oct 24 2019
STATUS
approved