login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108046
Inverse Moebius transform of Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, ...
1
0, 1, 1, 3, 3, 7, 8, 16, 22, 38, 55, 98, 144, 242, 381, 626, 987, 1625, 2584, 4221, 6774, 11002, 17711, 28768, 46371, 75170, 121415, 196662, 317811, 514650, 832040, 1346895, 2178365, 3525566, 5702898, 9229181, 14930352, 24160402, 39088314
OFFSET
1,4
LINKS
FORMULA
G.f.: Sum_{k>=1} Fibonacci(k-1)*x^k/(1 - x^k). - Ilya Gutkovskiy, May 23 2017
EXAMPLE
a(4)=3 because the divisors of 4 are 1,2,4 and the first, second and fourth Fibonacci numbers are 0, 1 and 2, respectively, having sum 3.
MAPLE
with(combinat): with(numtheory): f:=n->fibonacci(n-1): g:=proc(n) local div: div:=divisors(n): sum(f(div[j]), j=1..tau(n)) end: seq(g(n), n=1..45);
MATHEMATICA
a[n_] := DivisorSum[n, Fibonacci[#-1]&]; Array[a, 40] (* Jean-François Alcover, Dec 17 2015 *)
PROG
(PARI) a(n)=if(n<1, 1, sumdiv(n, d, fibonacci(d-1))); /* Joerg Arndt, Aug 14 2012 */
(Python)
from sympy import fibonacci, divisors
def a(n): return 1 if n<1 else sum([fibonacci(d - 1) for d in divisors(n)]) # Indranil Ghosh, May 23 2017
CROSSREFS
Sequence in context: A320294 A304179 A182559 * A286110 A116157 A056357
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 01 2005
STATUS
approved