OFFSET
0,4
COMMENTS
Signed version of A114525. - Eric W. Weisstein, Apr 07 2017
For n >= 3, also the coefficients of the matching polynomial for the n-cycle graph C_n. - Eric W. Weisstein, Apr 07 2017
This triangle describes the Chebyshev transform of A100047 and following. Chebyshev transform of sequence b is c(n) = Sum_{k=1..n} a(n,k)*b(k). - Christian G. Bower, Jun 12 2005
LINKS
G. C. Greubel, Rows n=0..100 of triangle, flattened
Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
P. Barry, A. Hennessy, Meixner-Type Results for Riordan Arrays and Associated Integer Sequences, J. Int. Seq. 13 (2010) # 10.9.4, section 5.
P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
L. W. Shapiro, S. Getu, Wen-Jin Woan and L. C. Woodson, The Riordan Group, Discrete Appl. Maths. 34 (1991) 229-239.
Eric Weisstein's World of Mathematics, Cycle Graph
Eric Weisstein's World of Mathematics, Matching Polynomial
FORMULA
Riordan array ( (1-x^2)/(1+x^2), x/(1+x^2)).
G.f.: (1-x^2)/(1+x^2-tx). - Emeric Deutsch, Jun 06 2005
From Peter Bala, Jun 29 2015: (Start)
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = x/(1 + x^2) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = ( 1 + sqrt(1 - 4*x^2) )/2.
In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)
EXAMPLE
Triangle begins:
1;
0, 1;
-2, 0, 1;
0, -3, 0, 1;
2, 0, -4, 0, 1;
MAPLE
f:=(1-x^2)/(1+x^2): g:=x/(1+x^2): G:=simplify(f/(1-t*g)): Gser:=simplify(series(G, x=0, 14)): P[0]:=1: for n from 1 to 12 do P[n]:=coeff(Gser, x^n) od: for n from 0 to 12 do seq(coeff(t*P[n], t^k), k=1..n+1) od; # yields sequence in triangular form # Emeric Deutsch, Jun 06 2005
MATHEMATICA
a[n_, k_] := SeriesCoefficient[(1-x^2)/(1+x^2-t*x), {x, 0, n}, {t, 0, k}]; a[0, 0] = 1; Table[a[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 08 2014, after Emeric Deutsch *)
Flatten[{{1}, CoefficientList[Table[I^n LucasL[n, -I x], {n, 10}], x]}] (* Eric W. Weisstein, Apr 07 2017 *)
Flatten[{{1}, CoefficientList[LinearRecurrence[{x, -1}, {x, -2 + x^2}, 10], x]}] (* Eric W. Weisstein, Apr 07 2017 *)
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Jun 02 2005
EXTENSIONS
More terms from Emeric Deutsch and Christian G. Bower, Jun 06 2005
STATUS
approved