login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: lower triangular matrix obtained by inverting the lower triangular matrix in A108044.
4

%I #39 Nov 24 2024 11:28:55

%S 1,0,1,-2,0,1,0,-3,0,1,2,0,-4,0,1,0,5,0,-5,0,1,-2,0,9,0,-6,0,1,0,-7,0,

%T 14,0,-7,0,1,2,0,-16,0,20,0,-8,0,1,0,9,0,-30,0,27,0,-9,0,1,-2,0,25,0,

%U -50,0,35,0,-10,0,1,0,-11,0,55,0,-77,0,44,0,-11,0,1,2,0,-36,0,105,0,-112,0,54,0,-12,0,1

%N Triangle read by rows: lower triangular matrix obtained by inverting the lower triangular matrix in A108044.

%C Signed version of A114525. - _Eric W. Weisstein_, Apr 07 2017

%C For n >= 3, also the coefficients of the matching polynomial for the n-cycle graph C_n. - _Eric W. Weisstein_, Apr 07 2017

%C This triangle describes the Chebyshev transform of A100047 and following. Chebyshev transform of sequence b is c(n) = Sum_{k=1..n} a(n,k)*b(k). - _Christian G. Bower_, Jun 12 2005

%H G. C. Greubel, <a href="/A108045/b108045.txt">Rows n=0..100 of triangle, flattened</a>

%H Aoife Hennessy, <a href="http://repository.wit.ie/1693">A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths</a>, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.

%H P. Barry, A. Hennessy, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Barry5/barry96s.html">Meixner-Type Results for Riordan Arrays and Associated Integer Sequences</a>, J. Int. Seq. 13 (2010) # 10.9.4, section 5.

%H P. Peart and W.-J. Woan, <a href="http://dx.doi.org/10.1016/S0166-218X(99)00166-3">A divisibility property for a subgroup of Riordan matrices</a>, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.

%H L. W. Shapiro, S. Getu, Wen-Jin Woan and L. C. Woodson, <a href="http://dx.doi.org/10.1016/0166-218X(91)90088-E">The Riordan Group</a>, Discrete Appl. Maths. 34 (1991) 229-239.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CycleGraph.html">Cycle Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MatchingPolynomial.html">Matching Polynomial</a>

%F Riordan array ( (1-x^2)/(1+x^2), x/(1+x^2)).

%F G.f.: (1-x^2)/(1+x^2-tx). - _Emeric Deutsch_, Jun 06 2005

%F From _Peter Bala_, Jun 29 2015: (Start)

%F Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = x/(1 + x^2) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).

%F T(n,k) = [x^(n-k)] f(x)^n with f(x) = ( 1 + sqrt(1 - 4*x^2) )/2.

%F In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)

%e Triangle begins:

%e 1;

%e 0, 1;

%e -2, 0, 1;

%e 0, -3, 0, 1;

%e 2, 0, -4, 0, 1;

%p f:=(1-x^2)/(1+x^2): g:=x/(1+x^2): G:=simplify(f/(1-t*g)): Gser:=simplify(series(G,x=0,14)): P[0]:=1: for n from 1 to 12 do P[n]:=coeff(Gser,x^n) od: for n from 0 to 12 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form # _Emeric Deutsch_, Jun 06 2005

%t a[n_, k_] := SeriesCoefficient[(1-x^2)/(1+x^2-t*x), {x, 0, n}, {t, 0, k}]; a[0, 0] = 1; Table[a[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 08 2014, after _Emeric Deutsch_ *)

%t Flatten[{{1}, CoefficientList[Table[I^n LucasL[n, -I x], {n, 10}], x]}] (* _Eric W. Weisstein_, Apr 07 2017 *)

%t Flatten[{{1}, CoefficientList[LinearRecurrence[{x, -1}, {x, -2 + x^2}, 10], x]}] (* _Eric W. Weisstein_, Apr 07 2017 *)

%Y Cf. A114525 (unsigned version).

%Y Cf. A007318, A108044.

%Y Cf. A127672.

%K sign,tabl,easy,changed

%O 0,4

%A _N. J. A. Sloane_, Jun 02 2005

%E More terms from _Emeric Deutsch_ and _Christian G. Bower_, Jun 06 2005