login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053119
Triangle of coefficients of Chebyshev's S(n,x) polynomials (exponents in decreasing order).
12
1, 1, 0, 1, 0, -1, 1, 0, -2, 0, 1, 0, -3, 0, 1, 1, 0, -4, 0, 3, 0, 1, 0, -5, 0, 6, 0, -1, 1, 0, -6, 0, 10, 0, -4, 0, 1, 0, -7, 0, 15, 0, -10, 0, 1, 1, 0, -8, 0, 21, 0, -20, 0, 5, 0, 1, 0, -9, 0, 28, 0, -35, 0, 15, 0, -1, 1, 0, -10, 0, 36, 0, -56, 0, 35, 0, -6, 0, 1, 0, -11, 0, 45, 0, -84, 0, 70, 0, -21, 0, 1
OFFSET
0,9
COMMENTS
These polynomials also give the determinant of the tridiagonal matrix having x on the diagonal and -1 next to these x. - M. F. Hasler, Oct 15 2019
The polynomial S(n,x) is the character of the irreducible (n+1) dimensional representation of the Lie algebra sl_2 when x is the character of irreducible 2-dimesional representation. - Leonid Bedratyuk, Oct 28 2023
REFERENCES
D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 232, Sect. 3.3.38.
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
FORMULA
a(n,m) = A049310(n,n-m).
G.f. for row polynomials S(n,x) (signed triangle): 1/(1-x*z+z^2).
Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,x) as row polynomials with G.f. 1/(1-x*z-z^2).
a(n, m) := 0 if n < m or m odd, else ((-1)^(3*m/2))*binomial(n-m/2, n-m); a(n, m) = a(n-1, m) - a(n-2, m-2), a(n, -2) := 0 =: a(n, -1), a(0, 0) = 1, a(n, m) = 0 if n < m or m odd.
G.f. for m-th column (signed triangle): (-1)^(3*m/2)*x^m/(1-x)^(m/2+1) if m >= 0 is even else 0.
Recurrence for the (unsigned) Fibonacci polynomials: F[1]=1, F[2]=x; for n>2, F[n] = x*F[n-1]+F[n-2].
a = 2*A192011 - 3*A192174. - Thomas Baruchel, Jun 02 2018
Recurrence for the polynomials S(n) = x S(n-1) - S(n-2); S(0) = 1, S(1) = x. - M. F. Hasler, Oct 15 2019
EXAMPLE
The triangle begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 1 0
2: 1 0 -1
3: 1 0 -2 0
4: 1 0 -3 0 1
5: 1 0 -4 0 3 0
6: 1 0 -5 0 6 0 -1
7: 1 0 -6 0 10 0 -4 0
8: 1 0 -7 0 15 0 -10 0 1
9: 1 0 -8 0 21 0 -20 0 5 0
10: 1 0 -9 0 28 0 -35 0 15 0 -1
... Reformatted. - Wolfdieter Lang, Dec 17 2013
E.g., fourth row (n=3) corresponds to polynomial S(3,x)= x^3-2*x.
Triangle of absolute values of coefficients (coefficients of Fibonacci polynomials) with exponents in increasing order begins:
[1]
[0, 1]
[1, 0, 1]
[0, 2, 0, 1]
[1, 0, 3, 0, 1]
[0, 3, 0, 4, 0, 1]
[1, 0, 6, 0, 5, 0, 1]
[0, 4, 0, 10, 0, 6, 0, 1]
[1, 0, 10, 0, 15, 0, 7, 0, 1]
[0, 5, 0, 20, 0, 21, 0, 8, 0, 1]
See A162515 for the Fibonacci polynomials with reversed row entries, starting there with row 1. - Wolfdieter Lang, Dec 16 2013
MAPLE
A053119 := (n, k) -> if k::even then (-1)^binomial(k, 2)*binomial(n - k/2, k/2)
else 0 fi: seq(seq(A053119(n, k), k = 0..n), n = 0..11); # Peter Luschny, Jul 20 2024
MATHEMATICA
ChebyshevS[n_, x_] := ChebyshevU[n, x/2]; Flatten[ Table[ Reverse[ CoefficientList[ ChebyshevS[n, x], x]], {n, 0, 12}]] (* Jean-François Alcover, Nov 25 2011 *)
PROG
(PARI) tabl(nn) = for (n=0, nn, print(Vec(polchebyshev(n, 2, x/2)))); \\ Michel Marcus, Jan 14 2016
CROSSREFS
Row sums give A000045. Reflection of A049310.
Cf. A162515. - Wolfdieter Lang, Dec 16 2013
Sequence in context: A335427 A083280 A060689 * A162515 A175267 A108045
KEYWORD
easy,nice,sign,tabl
STATUS
approved