login
A320745
Number of chiral pairs of color patterns (set partitions) in a cycle of length n using 5 or fewer colors (subsets).
3
0, 0, 0, 0, 0, 6, 34, 181, 871, 4016, 18526, 85101, 393148, 1822977, 8500893, 39809180, 187230704, 883730048, 4184926222, 19874478310, 94629276256, 451604739323, 2159748985582, 10348493650194, 49671898709098, 238804606717950, 1149792470325340, 5543620159707666, 26762240285558924, 129350640352555296, 625889650880647630, 3031651402693863747, 14698911258326292182, 71332938143655936584, 346474231506471943759
OFFSET
1,6
COMMENTS
Two color patterns are equivalent if the colors are permuted.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.
There are nonrecursive formulas, generating functions, and computer programs for A056293 and A305751, which can be used in conjunction with the first formula.
LINKS
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
FORMULA
a(n) = (A056293(n) - A305751(n)) / 2 = A056293(n) - A056355(n) = A056355(n) - A305751(n).
a(n) = Sum_{j=1..k} -Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where k=5 is the maximum number of colors, Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)), and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
a(n) = A059053(n) + A320643(n) + A320644(n) + A320645(n).
EXAMPLE
For a(6)=6, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, AABACC-AABBAC, AABACD-AABCAD, and AABCBD-AABCDC.
MATHEMATICA
Adnk[d_, n_, k_] := Adnk[d, n, k] = If[n>0 && k>0, Adnk[d, n-1, k]k + DivisorSum[d, Adnk[d, n-1, k-#]&], Boole[n == 0 && k == 0]]
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]] (* A304972 *)
k=5; Table[Sum[(DivisorSum[n, EulerPhi[#] Adnk[#, n/#, j]&]/n - Ach[n, j])/2, {j, k}], {n, 40}]
CROSSREFS
Column 5 of A320742.
Cf. A056293 (oriented), A056355 (unoriented), A305751 (achiral).
Sequence in context: A274405 A144142 A126643 * A084775 A327740 A229009
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Oct 21 2018
STATUS
approved