login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320743 Number of chiral pairs of color patterns (set partitions) in a cycle of length n using 3 or fewer colors (subsets). 4
0, 0, 0, 0, 0, 4, 13, 46, 144, 420, 1221, 3474, 9856, 27794, 78632, 222156, 629760, 1787440, 5087797, 14509580, 41479867, 118811286, 341009901, 980488510, 2824029648, 8146494860, 23534997912, 68084154502, 197211336576, 571915188840, 1660405181149, 4825559508106, 14038010213051, 40875403561680, 119122661856133, 347441159864556, 1014152747485696 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

Two color patterns are equivalent if the colors are permuted.

Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.

There are nonrecursive formulas, generating functions, and computer programs for A002076 and A182522, which can be used in conjunction with the first formula.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..200

E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.

FORMULA

a(n) = (A002076(n) - A182522(n)) / 2 = A002076(n) - A056353(n) = A056353(n) - A182522(n).

a(n) = Sum_{j=1..k} -Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where k=3 is the maximum number of colors, Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)), and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).

a(n) = A059053(n) + A320643(n).

EXAMPLE

For a(6)=4, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, and AABACC-AABBAC.

MATHEMATICA

Adnk[d_, n_, k_] := Adnk[d, n, k] = If[n>0 && k>0, Adnk[d, n-1, k]k + DivisorSum[d, Adnk[d, n-1, k-#]&], Boole[n == 0 && k == 0]]

Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]] (* A304972 *)

k=3; Table[Sum[(DivisorSum[n, EulerPhi[#] Adnk[#, n/#, j]&]/n - Ach[n, j])/2, {j, k}], {n, 40}]

CROSSREFS

Column 3 of A320742.

Cf. A002076 (oriented), A056353 (unoriented), A182522 (achiral).

Sequence in context: A155328 A096353 A034553 * A104460 A095128 A149433

Adjacent sequences:  A320740 A320741 A320742 * A320744 A320745 A320746

KEYWORD

nonn,easy

AUTHOR

Robert A. Russell, Oct 21 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 11:06 EDT 2021. Contains 346273 sequences. (Running on oeis4.)