This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273623 a(n) = Fibonacci(3*n) - (2 + (-1)^n)*Fibonacci(n). 4
 1, 5, 32, 135, 605, 2560, 10933, 46305, 196384, 831875, 3524489, 14929920, 63245753, 267913165, 1134902560, 4807524015, 20365009477, 86267563520, 365435291981, 1548008735625, 6557470308896, 27777889982155, 117669030432337, 498454011740160, 2111485077903025 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This is a divisibility sequence: if n divides m then a(n) divides a(m). The sequence satisfies a linear recurrence of order 6. In general, for integers r and s, the sequence Fibonacci(r*n) - 2*Fibonacci((r - 2*s)*n) + Fibonacci((r - 4*s)*n) is a divisibility sequence of the sixth order. This is the case r = 3, s = 1. See A127595 (case r = 4, s = 1). LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (4,4,-12,-4,4,1). FORMULA a(n) = Fibonacci(3*n) - 2*Fibonacci(n) + Fibonacci(-n). a(2*n) = 5*Fibonacci(2*n)^3; a(2n+1) = Fibonacci(2*n+1)*(5*Fibonacci(2*n+1)^2 - 4) = Fibonacci(2*n+1)*Lucas(2*n+1)^2. O.g.f. x*(x^4 - x^3 + 8*x^2 + x + 1)/( (1 + x - x^2 )*(1 - x - x^2)*(1 - 4*x - x^2 ) ). a(n) = 4*a(n-1) + 4*a(n-2) - 12*a(n-3) - 4*a(n-4) + 4*a(n-5) + a(n-6). - G. C. Greubel, Jun 02 2016 MAPLE with(combinat): seq(fibonacci(3*n) - (2 + (-1)^n)*fibonacci(n), n = 1..25); MATHEMATICA LinearRecurrence[{4, 4, -12, -4, 4, 1}, {1, 5, 32, 135, 605, 2560}, 100] (* G. C. Greubel, Jun 02 2016 *) Table[Fibonacci[3 n] - (2 + (-1)^n) Fibonacci[n], {n, 1, 30}] (* Vincenzo Librandi, Jun 02 2016 *) PROG (MAGMA) [Fibonacci(3*n)-(2+(-1)^n)*Fibonacci(n): n in [1..25]]; // Vincenzo Librandi, Jun 02 2016 (PARI) a(n)=fibonacci(3*n) - (2 + (-1)^n)*fibonacci(n) \\ Charles R Greathouse IV, Jun 08 2016 CROSSREFS Cf. A000032, A000045, A127595, A273622, A273624, A273625. Sequence in context: A089574 A077207 A319790 * A001589 A271903 A177467 Adjacent sequences:  A273620 A273621 A273622 * A273624 A273625 A273626 KEYWORD nonn,easy AUTHOR Peter Bala, May 29 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 21:04 EDT 2019. Contains 328225 sequences. (Running on oeis4.)