|
|
A276398
|
|
Limit S_oo where S_0 = 0, S_i = S_{i-1} 1^(4^i) S_{i-1} for i >0.
|
|
0
|
|
|
0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0
|
|
COMMENTS
|
The sequence is "transitive, not asymptotically periodic, has linear complexity but contains a subword with an infinite index". [Mignosi, Prop. 3.4)
|
|
LINKS
|
Table of n, a(n) for n=0..99.
Filippo Mignosi, Infinite words with linear subword complexity, Theoretical Computer Science, Volume 65, Issue 2, 28 June 1989, Pages 221-242; doi:10.1016/0304-3975(89)90046-7.
|
|
EXAMPLE
|
Let f(k) denote a string of 4^k 1's. The sequence is 0, f(1), 0, f(2), 0, f(1), 0, f(3), ...
|
|
CROSSREFS
|
Sequence in context: A226162 A080891 A011558 * A204549 A112713 A143536
Adjacent sequences: A276395 A276396 A276397 * A276399 A276400 A276401
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Sep 11 2016
|
|
STATUS
|
approved
|
|
|
|