The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276401 If n mod 3 = 0 then 3^(n/3)+12*n, if n mod 3 = 1 then 4*3^((n-4)/3)+12*n+51 otherwise 2*3^((n-2)/3)+12*n-36. 1
 39, 103, 30, 81, 147, 78, 135, 207, 150, 225, 315, 294, 423, 567, 654, 945, 1251, 1662, 2439, 3231, 4614, 6849, 9099, 13398, 20007, 26631, 39678, 59409, 79155, 118446, 177543, 236655, 354678, 531873, 709083, 1063302, 1594791, 2126295 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 LINKS Seiichi Manyama, Table of n, a(n) for n = 3..6287 Natasha Morrison and Alex Scott, Maximizing the number of induced cycles in a graph, Preprint, 2016. See Cor. 1.3. FORMULA From Chai Wah Wu, Sep 11 2016: (Start) a(n) = a(n-1) + 4*a(n-3) - 4*a(n-4) - 3*a(n-6) + 3*a(n-7) for n > 9. a(n) = 4*a(n-3) - 3*a(n-6) - 72 for n > 8. G.f.: x^3*(30*x^6 - 223*x^5 + 190*x^4 + 105*x^3 + 73*x^2 - 64*x - 39)/((x - 1)^2*(3*x^3 - 1)*(x^2 + x + 1)). (End) MAPLE f:=n-> if n mod 3 = 0 then 3^(n/3)+12*n elif n mod 3 = 1 then 4*3^((n-4)/3)+12*n+51 else 2*3^((n-2)/3)+12*n-36; fi; [seq(f(n), n=3..40)]; MATHEMATICA CoefficientList[Series[(30 x^6 -223 x^5 + 190 x^4 + 105 x^3 + 73 x^2 - 64 x - 39) / ((x-1)^2 (3 x^3-1) (x^2+x+1)), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 12 2016 *) Table[Which[Mod[n, 3]==0, 3^(n/3)+12n, Mod[n, 3]==1, 4*3^((n-4)/3)+12n+51, True, 2*3^((n-2)/3)+12n-36], {n, 3, 40}] (* Harvey P. Dale, Nov 16 2020 *) CROSSREFS Sequence in context: A158339 A211499 A126077 * A044226 A044607 A244694 Adjacent sequences:  A276398 A276399 A276400 * A276402 A276403 A276404 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Sep 11 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 14:01 EDT 2022. Contains 356091 sequences. (Running on oeis4.)