login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016290
Expansion of 1/((1-2x)(1-4x)(1-8x)).
7
1, 14, 140, 1240, 10416, 85344, 690880, 5559680, 44608256, 357389824, 2861214720, 22898104320, 183218384896, 1465881288704, 11727587164160, 93822844764160, 750591347982336, 6004765143465984, 48038258586419200, 384306618446643200, 3074455146595352576, 24595649968853745664
OFFSET
0,2
COMMENTS
a(n) is the number of quads in the EvenQuads-2^{n+2} deck. - Tanya Khovanova and MIT PRIMES STEP senior group, Jul 02 2023
LINKS
Julia Crager, Felicia Flores, Timothy E. Goldberg, Lauren L. Rose, Daniel Rose-Levine, Darrion Thornburgh, and Raphael Walker, How many cards should you lay out in a game of EvenQuads? A detailed study of 2-caps in AG(n,2), arXiv:2212.05353 [math.CO], 2023.
FORMULA
G.f.: 1/((1-2x)*(1-4x)*(1-8x)).
Difference of Gaussian binomial coefficients [ n+1, 3 ] - [ n, 3 ] (n >= 2).
a(n) = (2^n-6*4^n+8*8^n)/3. - James R. Buddenhagen, Dec 14 2003
a(n) = Sum_{0<=i,j,k,<=n; i+j+k=n} 2^i*4^j*8^k. - Hieronymus Fischer, Jun 25 2007
From Vincenzo Librandi, Mar 15 2011: (Start)
a(n) = 14*a(n-1) - 56*a(n-2) + 64*a(n-3) for n >= 3.
a(n) = 12*a(n-1) - 32*a(n-2) + 2^n with a(0)=1, a(1)=14. (End)
MAPLE
[seq(GBC(n+1, 3, 2)-GBC(n, 3, 2), n=2..30)]; # produces A016290 (cf. A006516).
seq((2^n-6*4^n+8*8^n)/3, n=0..20);
seq(binomial(2^n, 3)/4, n=2..20); # Zerinvary Lajos, Feb 22 2008
MATHEMATICA
CoefficientList[Series[1/((1-2x)(1-4x)(1-8x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{14, -56, 64}, {1, 14, 140}, 30] (* Harvey P. Dale, Jul 23 2011 *)
PROG
(Magma) [(2^n-6*4^n+8*8^n)/3 : n in [0..20]]; // Wesley Ivan Hurt, Jul 07 2014
CROSSREFS
Sequence in context: A374513 A377200 A125402 * A003457 A263822 A016241
KEYWORD
nonn,nice,easy
STATUS
approved