login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1-2x)(1-4x)(1-8x)).
7

%I #58 Aug 02 2023 14:14:32

%S 1,14,140,1240,10416,85344,690880,5559680,44608256,357389824,

%T 2861214720,22898104320,183218384896,1465881288704,11727587164160,

%U 93822844764160,750591347982336,6004765143465984,48038258586419200,384306618446643200,3074455146595352576,24595649968853745664

%N Expansion of 1/((1-2x)(1-4x)(1-8x)).

%C a(n) is the number of quads in the EvenQuads-2^{n+2} deck. - _Tanya Khovanova_ and MIT PRIMES STEP senior group, Jul 02 2023

%H T. D. Noe, <a href="/A016290/b016290.txt">Table of n, a(n) for n=0..100</a>

%H Julia Crager, Felicia Flores, Timothy E. Goldberg, Lauren L. Rose, Daniel Rose-Levine, Darrion Thornburgh, and Raphael Walker, <a href="https://arxiv.org/abs/2212.05353">How many cards should you lay out in a game of EvenQuads? A detailed study of 2-caps in AG(n,2)</a>, arXiv:2212.05353 [math.CO], 2023.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (14,-56,64).

%F G.f.: 1/((1-2x)*(1-4x)*(1-8x)).

%F Difference of Gaussian binomial coefficients [ n+1, 3 ] - [ n, 3 ] (n >= 2).

%F a(n) = (2^n-6*4^n+8*8^n)/3. - _James R. Buddenhagen_, Dec 14 2003

%F a(n) = Sum_{0<=i,j,k,<=n; i+j+k=n} 2^i*4^j*8^k. - _Hieronymus Fischer_, Jun 25 2007

%F From _Vincenzo Librandi_, Mar 15 2011: (Start)

%F a(n) = 14*a(n-1) - 56*a(n-2) + 64*a(n-3) for n >= 3.

%F a(n) = 12*a(n-1) - 32*a(n-2) + 2^n with a(0)=1, a(1)=14. (End)

%p [seq(GBC(n+1,3,2)-GBC(n,3,2), n=2..30)]; # produces A016290 (cf. A006516).

%p seq((2^n-6*4^n+8*8^n)/3, n=0..20);

%p seq(binomial(2^n,3)/4, n=2..20); # _Zerinvary Lajos_, Feb 22 2008

%t CoefficientList[Series[1/((1-2x)(1-4x)(1-8x)),{x,0,30}],x] (* or *) LinearRecurrence[{14,-56,64},{1,14,140},30] (* _Harvey P. Dale_, Jul 23 2011 *)

%o (Magma) [(2^n-6*4^n+8*8^n)/3 : n in [0..20]]; // _Wesley Ivan Hurt_, Jul 07 2014

%Y Cf. A006516, A016152.

%K nonn,nice,easy

%O 0,2

%A _N. J. A. Sloane_