login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296211
a(n) = 1 if sigma(n)-1 is a prime, 0 otherwise.
3
0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1
OFFSET
1
COMMENTS
Characteristic function of A248792, numbers n such that sigma(n) - 1 is a prime.
FORMULA
a(1) = 0; for n > 1, a(n) = A010051(A000203(n)-1) = A010051(A039653(n)).
a(n) >= A010051(n).
MATHEMATICA
Table[If[PrimeQ[DivisorSigma[1, n]-1], 1, 0], {n, 120}] (* Harvey P. Dale, Aug 20 2021 *)
PROG
(Scheme) (define (A296211 n) (if (= 1 n) 0 (A010051 (+ -1 (A000203 n)))))
CROSSREFS
Cf. A000203, A010051, A039653, A248792 (positions of ones), A296091, A296212.
Sequence in context: A377870 A353471 A157658 * A341642 A123506 A051105
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 07 2017
STATUS
approved