login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007094
Numbers in base 8.
(Formerly M0498)
223
0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 76, 77, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111
OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(0) = 0; a(n) = 10*a(n/8) if n == 0 (mod 8); a(n) = a(n-1) + 1 otherwise. - Benoit Cloitre, Dec 22 2002
G.f.: sum(d>=0, 10^d*(x^(8^d) +2*x^(2*8^d) +3*x^(3*8^d) +4*x^(4*8^d) +5*x^(5*8^d) +6*x^(6*8^d) +7*x^(7*8^d)) * (1-x^(8^d)) / ((1-x^(8^(d+1)))*(1-x))). - Robert Israel, Aug 03 2014
MAPLE
A007094 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n, base, 8): return op(convert(l, base, 10, 10^nops(l))): end: seq(A007094(n), n=0..66); # Nathaniel Johnston, May 06 2011
MATHEMATICA
Table[FromDigits[IntegerDigits[n, 8]], {n, 0, 70}]
PROG
(PARI) a(n)=if(n<1, 0, if(n%8, a(n-1)+1, 10*a(n/8)))
(PARI) apply( A007094(n)=fromdigits(digits(n, 8)), [0..77]) \\ M. F. Hasler, Nov 18 2019
(Haskell)
a007094 0 = 0
a007094 n = 10 * a007094 n' + m where (n', m) = divMod n 8
-- Reinhard Zumkeller, Aug 29 2013
(Python)
def a(n): return int(oct(n)[2:])
print([a(n) for n in range(74)]) # Michael S. Branicky, Jun 28 2021
CROSSREFS
Cf. A057104; A000042 (base 1), A007088 (base 2), A007089 (base 3), A007090 (base 4), A007091 (base 5), A007092 (base 6), A007093 (base 7), A007095 (base 9).
Sequence in context: A039207 A272576 A039155 * A000433 A031492 A350076
KEYWORD
nonn,easy,base
STATUS
approved