Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0498 #54 Jun 29 2021 02:33:47
%S 0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20,21,22,23,24,25,26,27,30,
%T 31,32,33,34,35,36,37,40,41,42,43,44,45,46,47,50,51,52,53,54,55,56,57,
%U 60,61,62,63,64,65,66,67,70,71,72,73,74,75,76,77,100,101,102,103,104,105,106,107,110,111
%N Numbers in base 8.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Nathaniel Johnston, <a href="/A007094/b007094.txt">Table of n, a(n) for n = 0..10000</a>
%H Wikipedia, <a href="http://www.wikipedia.org/wiki/Octal">Octal</a>
%H R. G. Wilson, V, <a href="/A007088/a007088.pdf">Letter to N. J. A. Sloane, Sep. 1992</a>
%H <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>.
%F a(0) = 0; a(n) = 10*a(n/8) if n == 0 (mod 8); a(n) = a(n-1) + 1 otherwise. - _Benoit Cloitre_, Dec 22 2002
%F G.f.: sum(d>=0, 10^d*(x^(8^d) +2*x^(2*8^d) +3*x^(3*8^d) +4*x^(4*8^d) +5*x^(5*8^d) +6*x^(6*8^d) +7*x^(7*8^d)) * (1-x^(8^d)) / ((1-x^(8^(d+1)))*(1-x))). - _Robert Israel_, Aug 03 2014
%p A007094 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,8): return op(convert(l,base,10,10^nops(l))): end: seq(A007094(n), n=0..66); # _Nathaniel Johnston_, May 06 2011
%t Table[FromDigits[IntegerDigits[n, 8]], {n, 0, 70}]
%o (PARI) a(n)=if(n<1,0,if(n%8,a(n-1)+1,10*a(n/8)))
%o (PARI) apply( A007094(n)=fromdigits(digits(n,8)), [0..77]) \\ _M. F. Hasler_, Nov 18 2019
%o (Haskell)
%o a007094 0 = 0
%o a007094 n = 10 * a007094 n' + m where (n', m) = divMod n 8
%o -- _Reinhard Zumkeller_, Aug 29 2013
%o (Python)
%o def a(n): return int(oct(n)[2:])
%o print([a(n) for n in range(74)]) # _Michael S. Branicky_, Jun 28 2021
%Y Cf. A057104; A000042 (base 1), A007088 (base 2), A007089 (base 3), A007090 (base 4), A007091 (base 5), A007092 (base 6), A007093 (base 7), A007095 (base 9).
%K nonn,easy,base
%O 0,3
%A _N. J. A. Sloane_, _Robert G. Wilson v_