|
|
A000433
|
|
n written in base where place values are positive cubes.
|
|
5
|
|
|
0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 120, 121, 122, 123, 124, 125, 126, 127, 130, 131, 132, 200, 201, 202, 203
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Let [d1, d2, d3, ...] be the decimal expansion of the n-th term, then dk is the number of times that the greedy algorithm subtracts the cube k^3 with input n. - Joerg Arndt, Nov 21 2014
For n > 1: A048766(n) = number of digits of a(n); A190311(n) = number of nonzero digits of a(n); A055401(n) = sum of digits of a(n). - Reinhard Zumkeller, May 08 2011
First differs from numbers written in base 8 (A007094) at a(27) = 100, whereas A007094(27) = 33. - Alonso del Arte, Nov 27 2014
The rightmost (least significant) digit never exceeds 7, the second digit from the right never exceeds 3, the third digit never exceeds 2, and the rest are just 0's and 1's. - Ivan Neretin, Sep 03 2015
|
|
REFERENCES
|
Florentin Smarandache, "Properties of the Numbers", University of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ.
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
|
|
EXAMPLE
|
a(26) = 32 because 26 = 3 * 2^3 + 2 * 1^3.
a(27) = 100 because 27 = 3^3 + 0 * 2^3 + 0 * 1^3.
a(28) = 101 because 28 = 3^3 + 0 * 2^3 + 1 * 1^3.
|
|
PROG
|
(Haskell)
import Data.Char (intToDigit)
a000433 0 = 0
a000433 n = read $ map intToDigit $
t n $ reverse $ takeWhile (<= n) $ tail a000578_list where
t _ [] = []
t m (x:xs)
| x > m = 0 : t m xs
| otherwise = (fromInteger m') : t r xs where (m', r) = divMod m x
-- Reinhard Zumkeller, May 08 2011
|
|
CROSSREFS
|
Cf. A000578, A007961.
Sequence in context: A272576 A039155 A007094 * A031492 A350076 A035060
Adjacent sequences: A000430 A000431 A000432 * A000434 A000435 A000436
|
|
KEYWORD
|
nonn,base,easy,look
|
|
AUTHOR
|
R. Muller
|
|
STATUS
|
approved
|
|
|
|