login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000432 Series-parallel numbers.
(Formerly M4538 N1926)
0
8, 52, 288, 1424, 6648, 29700, 128800, 545600, 2269672, 9303140, 37672216, 150998016, 599988696, 2366216164, 9270987656, 36116062832, 139978757920, 540069059028, 2075217121688, 7944690769952, 30313624200640, 115312027433188, 437420730644304, 1655047867097280, 6247339311097296, 23530440547115428, 88447214709073696, 331832490378209152, 1242766581420901656, 4646714574562484628, 17347357264162110368, 64668460220964604944, 240747014238189337840, 895102104022837748484, 3323982608759454833032, 12329573838525875316560, 45684294664598118867184, 169098457957523787786644 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

REFERENCES

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 142.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=3..40.

FORMULA

G.f.: 4(2+S)(1+S)/(1-S)^5, where S = g.f. for A000084. - Sean A. Irvine, Nov 14 2010

MATHEMATICA

n = 38; s = 1/(1 - x) + O[x]^(n + 1); Do[s = s/(1 - x^k)^Coefficient[s, x^k] + O[x]^(n + 1), {k, 2, n}] ; S = s - 1; CoefficientList[4 (2 + S) (1 + S)/(1 - S)^5 + O[x]^n, x] (* Jean-François Alcover, Feb 09 2016 *)

CROSSREFS

Sequence in context: A022732 A256047 A227732 * A153336 A080279 A279283

Adjacent sequences: A000429 A000430 A000431 * A000433 A000434 A000435

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Sean A. Irvine, Nov 14 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 03:48 EDT 2023. Contains 361577 sequences. (Running on oeis4.)