login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030301
n-th run has length 2^(n-1).
8
0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,1
FORMULA
a(n) = A000523(n) mod 2 = (A029837(n+1)+1) mod 2.
a(n) = 0 iff n has an odd number of digits in binary, = 1 otherwise. - Henry Bottomley, Apr 06 2000
a(n) = (1/2)*{1-(-1)^floor(log(n)/log(2))}. - Benoit Cloitre, Nov 22 2001
a(n) = 1-a(floor(n/2)). - Vladeta Jovovic, Aug 04 2003
a(n) = 1 - A030300(n). - Antti Karttunen, Oct 10 2017
MATHEMATICA
nMax = 7; Table[1 - Mod[n, 2], {n, nMax}, {2^(n-1)}] // Flatten (* Jean-François Alcover, Oct 20 2016 *)
Table[{PadRight[{}, 2^(n-1), 0], PadRight[{}, 2^n, 1]}, {n, 1, 8, 2}]//Flatten (* Harvey P. Dale, Apr 12 2023 *)
PROG
(PARI) a(n)=if(n<1, 0, 1-length(binary(n))%2)
(PARI) a(n)=if(n<1, 0, if(n%2==0, -a(n/2)+1, -a((n-1)/2)+1-(((n-1)/2)==0))) /* Ralf Stephan */
(Magma) [Floor(Log(n)/Log(2)) mod 2: n in [1..100]]; // Vincenzo Librandi, Jun 23 2015
(Python)
def A030301(n): return n.bit_length()&1^1 # Chai Wah Wu, Jan 30 2023
CROSSREFS
Cf. A030300. Partial sums give A079954.
Characteristic function of A053754 (after its initial 0).
Sequence in context: A284789 A288736 A270803 * A316341 A284901 A071981
KEYWORD
nonn,base,easy
STATUS
approved