login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079954
Partial sums of A030301.
3
0, 1, 2, 2, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42
OFFSET
1,3
LINKS
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, pp. 49-50.
FORMULA
a(n) = (n - 1 - (2/3)*(4^e_4-1) - (-1)^e_2*(n - 1 - 2*(4^e_4-1)))/2 where e_4 = floor(log_4(n)) and e_2 = floor(log_2(n)) = floor(log_4(n^2)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 22 2003
a(n) = n - A079947(n). Let k=A000523(n), then a(n) = A000975(k) if k even, or a(n) = n - A000975(k) if k odd. - Kevin Ryde, Jul 23 2019
MATHEMATICA
Accumulate@ Flatten@ Table[1 - Mod[n, 2], {n, 7}, {2^(n - 1)}] (* Michael De Vlieger, Oct 29 2022 *)
PROG
(PARI) a(n) = my(k=logint(n, 2), p=(2<<k)\3); if(bittest(k, 0), n-p, p); /* Kevin Ryde, Jul 23 2019 */
(Magma) [&+[Floor(Log(k)/Log(2)) mod 2:k in [1..n]]:n in [1..75]]; // Marius A. Burtea, Oct 25 2019
(Python)
def A079954(n): return ((1<<k)-2)//3 if (k:=n.bit_length())&1 else n-((1<<k)-1)//3 # Chai Wah Wu, Jan 30 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 22 2003
STATUS
approved