login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079951
Number of primes p with prime(n) == 1 (modulo 2*p).
2
0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 1, 2, 1, 3, 2, 2, 2, 2, 3, 2, 1, 3, 2, 2, 3, 1, 1, 1, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 3, 1, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 1, 2, 3, 2, 3, 3, 2, 1, 2, 3
OFFSET
1,6
FORMULA
a(n) = A001221(floor(A000040(n)/2)). - Jon Maiga, Jan 06 2019
EXAMPLE
n=6: prime(6)=13 and 13 mod (2*2) = 1, 13 mod (2*3) = 1, 13 mod(2*5) = 3, 13 mod (2*7) = 13, therefore a(6)=2.
MATHEMATICA
Table[PrimeNu[Floor[Prime[n]/2]], {n, 105}] (* Jon Maiga, Jan 06 2019 *)
PROG
(PARI) a(n) = omega(prime(n)\2); \\ Michel Marcus, Jan 06 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jan 19 2003
STATUS
approved