login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of primes p with prime(n) == 1 (modulo 2*p).
2

%I #12 Jan 10 2019 02:21:21

%S 0,0,1,1,1,2,1,1,1,2,2,2,2,2,1,2,1,3,2,2,2,2,1,2,2,2,2,1,2,2,2,2,2,2,

%T 2,2,3,1,1,2,1,3,2,2,2,2,3,2,1,3,2,2,3,1,1,1,2,2,3,3,2,2,2,2,3,2,3,3,

%U 1,3,2,1,2,3,2,1,2,3,2,3,2,4,2,2,2,2,2,3,3,3,1,1,1,2,2,1,2,3,2,3,3,2,1,2,3

%N Number of primes p with prime(n) == 1 (modulo 2*p).

%F a(n) = A001221(floor(A000040(n)/2)). - _Jon Maiga_, Jan 06 2019

%e n=6: prime(6)=13 and 13 mod (2*2) = 1, 13 mod (2*3) = 1, 13 mod(2*5) = 3, 13 mod (2*7) = 13, therefore a(6)=2.

%t Table[PrimeNu[Floor[Prime[n]/2]], {n, 105}] (* _Jon Maiga_, Jan 06 2019 *)

%o (PARI) a(n) = omega(prime(n)\2); \\ _Michel Marcus_, Jan 06 2019

%Y Cf. A001221, A079950, A079952.

%K nonn

%O 1,6

%A _Reinhard Zumkeller_, Jan 19 2003