login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079949
Special values of Hermite polynomials.
1
1, 6, 38, 252, 1740, 12456, 92136, 702288, 5503632, 44258400, 364615776, 3072862656, 26458723008, 232501041792, 2082933048960, 19007627463936, 176533756252416, 1667446616360448, 16006827410744832, 156069042653445120
OFFSET
0,2
LINKS
FORMULA
In Maple notation, a(n) = I^n*HermiteH(n, -3*I)
Recurrence: a(n) = 6*a(n-1) + 2*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ 2^(n/2-1/2)*exp(-n/2+3*sqrt(2*n)-9/2)*n^(n/2)*(1+3*sqrt(2)/sqrt(n)). - Vaclav Kotesovec, Oct 13 2012
E.g.f.: exp(x^2+6*x). - Vaclav Kotesovec, Oct 21 2012
MAPLE
seq(expand(I^n*HermiteH(n, -I*3)), n=0..14);
MATHEMATICA
Table[I^n*HermiteH[n, -3I], {n, 0, 20}]
CoefficientList[Series[E^(x^2+6*x), {x, 0, 20}], x]*Range[0, 20]! (* Vaclav Kotesovec, Oct 21 2012 *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace(exp(x^2+6*x))) \\ Joerg Arndt, May 07 2013
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(6*x + x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 10 2018
CROSSREFS
Cf. A000898.
Sequence in context: A215466 A147957 A098410 * A026940 A082427 A192941
KEYWORD
nonn
AUTHOR
Karol A. Penson, Jan 19 2003
EXTENSIONS
Edited and extended by Robert G. Wilson v, Jan 22 2003
STATUS
approved