login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247795
Irregular triangle read by rows in which row n lists the parities of the divisors of n.
6
1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1
OFFSET
1
COMMENTS
A001227(n) = number of ones in row n;
A183063(n) = number of zeros in row n.
LINKS
FORMULA
T(n,k) = A027750(n,k) mod 2, 1 <= k <= A000005(n).
T(n,1) = 1; T(n,A000005(n)) = n mod 2.
a(j) = A000035(A027750(j)), j >= 1. - Omar E. Pol, Feb 20 2022
EXAMPLE
. n | T(n,*) | A027750(n,*) | A000005(n)
. ---+--------------------+-------------------------+------------
. 1 | 1 | 1 | 1
. 2 | 1 0 | 1 2 | 2
. 3 | 1 1 | 1 3 | 2
. 4 | 1 0 0 | 1 2 4 | 3
. 5 | 1 1 | 1 5 | 2
. 6 | 1 0 1 0 | 1 2 3 6 | 4
. 7 | 1 1 | 1 7 | 2
. 8 | 1 0 0 0 | 1 2 4 8 | 4
. 9 | 1 1 1 | 1 3 9 | 3
. 10 | 1 0 1 0 | 1 2 5 10 | 4
. 11 | 1 1 | 1 11 | 2
. 12 | 1 0 1 0 0 0 | 1 2 3 4 6 12 | 6
. 13 | 1 1 | 1 13 | 2
. 14 | 1 0 1 0 | 1 2 7 14 | 4
. 15 | 1 1 1 1 | 1 3 5 15 | 4
. 16 | 1 0 0 0 0 | 1 2 4 8 16 | 5
. 17 | 1 1 | 1 17 | 2
. 18 | 1 0 1 0 1 0 | 1 2 3 6 9 18 | 6
. 19 | 1 1 | 1 19 | 2
. 20 | 1 0 0 1 0 0 | 1 2 4 5 10 20 | 6 .
PROG
(Haskell)
a247795 n k = a247795_tabf !! (n-1) !! (k-1)
a247795_row n = a247795_tabf !! (n-1)
a247795_tabf = map (map (flip mod 2)) a027750_tabf
(PARI) row(n) = apply(x->x%2, divisors(n)); \\ Michel Marcus, Jan 23 2022
CROSSREFS
Cf. A000005 (row lengths), A000035, A001227 (row sums), A027750, A183063.
Sequence in context: A305994 A030302 A051023 * A030657 A249066 A176178
KEYWORD
nonn,tabf
AUTHOR
Reinhard Zumkeller, Sep 28 2014
STATUS
approved