login
A249066
a(n) is the number of new prime distinct divisors of n^2+1 not already present in m^2+1 for all m < n.
1
1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1
OFFSET
1,1
COMMENTS
a(n) = 0 or 1. Proof:
If n^2+1 is composite, it is always possible to write n^2+1 = x*y where x and y are two integers. Suppose a(n)=2 with x>n and y>n (if x<n or y<n, then x or y is divisor of (n-x)^2+1 or (n-y)^2+1). So, x*y > n^2+1, a contradiction.
LINKS
FORMULA
a(A002313(n)) = 0.
a(A005574(n)) = 1.
EXAMPLE
a(3)=0 because A002522(3)= 2*5 and the prime divisors 2 and 5 exist already with A002522(1)= 2 and A002522(2)= 5.
a(4)= 1 because A002522(4)=17 is prime.
a(5)= 1 because A002522(5)=2*13 and the prime divisor 13 appears for the first time.
MAPLE
with(numtheory): nn:=600:lst:={0}:for n from 1 to 100 do:x:=factorset(n^2+1):lst1:=lst intersect x:n0:=nops(x minus lst1): printf(`%d, `, n0):lst:=lst union x:od:
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Oct 20 2014
STATUS
approved