login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows in which row n lists the parities of the divisors of n.
6

%I #13 Mar 13 2022 19:03:06

%S 1,1,0,1,1,1,0,0,1,1,1,0,1,0,1,1,1,0,0,0,1,1,1,1,0,1,0,1,1,1,0,1,0,0,

%T 0,1,1,1,0,1,0,1,1,1,1,1,0,0,0,0,1,1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,1,

%U 1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,1,1

%N Irregular triangle read by rows in which row n lists the parities of the divisors of n.

%C A001227(n) = number of ones in row n;

%C A183063(n) = number of zeros in row n.

%H Reinhard Zumkeller, <a href="/A247795/b247795.txt">Rows n = 1..1000 of triangle, flattened</a>

%F T(n,k) = A027750(n,k) mod 2, 1 <= k <= A000005(n).

%F T(n,1) = 1; T(n,A000005(n)) = n mod 2.

%F a(j) = A000035(A027750(j)), j >= 1. - _Omar E. Pol_, Feb 20 2022

%e . n | T(n,*) | A027750(n,*) | A000005(n)

%e . ---+--------------------+-------------------------+------------

%e . 1 | 1 | 1 | 1

%e . 2 | 1 0 | 1 2 | 2

%e . 3 | 1 1 | 1 3 | 2

%e . 4 | 1 0 0 | 1 2 4 | 3

%e . 5 | 1 1 | 1 5 | 2

%e . 6 | 1 0 1 0 | 1 2 3 6 | 4

%e . 7 | 1 1 | 1 7 | 2

%e . 8 | 1 0 0 0 | 1 2 4 8 | 4

%e . 9 | 1 1 1 | 1 3 9 | 3

%e . 10 | 1 0 1 0 | 1 2 5 10 | 4

%e . 11 | 1 1 | 1 11 | 2

%e . 12 | 1 0 1 0 0 0 | 1 2 3 4 6 12 | 6

%e . 13 | 1 1 | 1 13 | 2

%e . 14 | 1 0 1 0 | 1 2 7 14 | 4

%e . 15 | 1 1 1 1 | 1 3 5 15 | 4

%e . 16 | 1 0 0 0 0 | 1 2 4 8 16 | 5

%e . 17 | 1 1 | 1 17 | 2

%e . 18 | 1 0 1 0 1 0 | 1 2 3 6 9 18 | 6

%e . 19 | 1 1 | 1 19 | 2

%e . 20 | 1 0 0 1 0 0 | 1 2 4 5 10 20 | 6 .

%o (Haskell)

%o a247795 n k = a247795_tabf !! (n-1) !! (k-1)

%o a247795_row n = a247795_tabf !! (n-1)

%o a247795_tabf = map (map (flip mod 2)) a027750_tabf

%o (PARI) row(n) = apply(x->x%2, divisors(n)); \\ _Michel Marcus_, Jan 23 2022

%Y Cf. A000005 (row lengths), A000035, A001227 (row sums), A027750, A183063.

%K nonn,tabf

%O 1

%A _Reinhard Zumkeller_, Sep 28 2014