login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024219
a(n) = floor( (2nd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ), where S(n) = {first n+1 positive integers congruent to 1 mod 3}.
2
0, 3, 7, 12, 19, 28, 38, 49, 62, 77, 93, 110, 129, 150, 172, 195, 220, 247, 275, 304, 335, 368, 402, 437, 474, 513, 553, 594, 637, 682, 728, 775, 824, 875, 927, 980, 1035, 1092, 1150, 1209, 1270, 1333, 1397, 1462, 1529, 1598, 1668, 1739, 1812, 1887, 1963, 2040
OFFSET
1,2
FORMULA
From R. J. Mathar, Oct 08 2011: (Start)
Conjecture: a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5);
g.f.: x^2*(-3+2*x-3*x^2+x^3) / ( (x^2+1)*(x-1)^3 ). (End)
From Andrew Howroyd, Aug 12 2018: (Start)
The above conjectures are true.
a(n) = floor(A024212(n) / A000326(n+1)).
a(n) = floor(n*(9*n^2 + 9*n - 2)/(4*(3*n + 2))).
(End)
MATHEMATICA
LinearRecurrence[{3, -4, 4, -3, 1}, {0, 3, 7, 12, 19}, 60] (* Harvey P. Dale, May 20 2019 *)
PROG
(PARI) a(n)=floor(sum(j=0, n, sum(k=j+1, n, (3*j+1)*(3*k+1)))/sum(i=0, n, (3*i+1))) \\ Andrew Howroyd, Aug 12 2018
(PARI) a(n) = floor(n*(9*n^2+9*n-2)/(4*(3*n+2))); \\ Andrew Howroyd, Aug 12 2018
CROSSREFS
Sequence in context: A077043 A022330 A303279 * A371701 A283733 A025713
KEYWORD
nonn,easy
EXTENSIONS
More terms from Joshua Zucker, May 20 2006
STATUS
approved