OFFSET
1,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1000
Wikipedia, Elementary symmetric polynomial
Index entries for linear recurrences with constant coefficients, signature (3,-4,4,-3,1).
FORMULA
From R. J. Mathar, Oct 08 2011: (Start)
Conjecture: a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5);
g.f.: x^2*(-3+2*x-3*x^2+x^3) / ( (x^2+1)*(x-1)^3 ). (End)
From Andrew Howroyd, Aug 12 2018: (Start)
The above conjectures are true.
a(n) = floor(n*(9*n^2 + 9*n - 2)/(4*(3*n + 2))).
(End)
MATHEMATICA
LinearRecurrence[{3, -4, 4, -3, 1}, {0, 3, 7, 12, 19}, 60] (* Harvey P. Dale, May 20 2019 *)
PROG
(PARI) a(n)=floor(sum(j=0, n, sum(k=j+1, n, (3*j+1)*(3*k+1)))/sum(i=0, n, (3*i+1))) \\ Andrew Howroyd, Aug 12 2018
(PARI) a(n) = floor(n*(9*n^2+9*n-2)/(4*(3*n+2))); \\ Andrew Howroyd, Aug 12 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Joshua Zucker, May 20 2006
STATUS
approved