The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194099 Numbers m>=2, such that, if a prime p divides m^2-1, then every prime q<p divides m^2-1 as well. 1
3, 5, 7, 11, 17, 19, 29, 31, 41, 49, 71, 161, 251, 449, 769, 881, 1079, 1429, 3431, 4159, 4801, 6049, 8749, 19601, 24751, 246401, 388961, 1267111 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
No more terms <= 10^8.
No more terms <= 2 * 10^38. [Charles R Greathouse IV, Aug 22 2011]
All terms are odd. - Kausthub Gudipati, Aug 22 2011
LINKS
Florian Luca and Filip Najman, On the largest prime factor of x^2 - 1. Math. Comp. 80 (2011), 429-435.
FORMULA
A055932 INTERSECT A005563. - R. J. Mathar, Aug 16 2011
EXAMPLE
881^2-1 = 776160 = 2^5 * 3^2 * 5 *7^2 * 11 (all primes <= 11 appear), so 881 is a term.
MATHEMATICA
Select[Range[1, 10^4], First@ # == 1 && If[Length@ # > 1, Union@ Differences@ # == {1}, True] &@ PrimePi@ Map[First, FactorInteger[#^2 - 1]] &] (* Michael De Vlieger, Jul 02 2016 *)
PROG
(PARI) isok(n) = my(f = factor(n^2-1)); #f~ == primepi(f[#f~, 1]); \\ Michel Marcus, Jul 02 2016
CROSSREFS
Sequence in context: A290283 A163420 A155489 * A045396 A155779 A337815
KEYWORD
nonn,more
AUTHOR
Vladimir Shevelev, Aug 15 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 01:54 EDT 2024. Contains 372614 sequences. (Running on oeis4.)