login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290283
Primes p such that A215458(p) is prime.
0
3, 5, 7, 11, 17, 19, 23, 101, 107, 109, 113, 163, 283, 311, 331, 347, 359, 701, 1153, 1597, 1621, 2063, 2437, 2909, 3319, 6011, 12829, 46147, 46471, 74219, 112297, 128411, 178693, 223759, 268841, 407821, 526763, 925391, 927763
OFFSET
1,1
COMMENTS
Primes p such that (2^p - (1/2 - (i * sqrt(7))/2)^p - (1/2 + (i * sqrt(7))/2)^p + 1)/2 is prime.
It is conjectured that there are infinitely many terms.
EXAMPLE
A215458(3) = 7, A215458(5) = 11, A215458 (7) = 71 are all primes, hence 3, 5, 7 are in this sequence.
MAPLE
h := proc(n) option remember; `if`(n=0, 2, `if`(n=1, 1, h(n-1)-2*h(n-2))) end:
select(n->isprime((2^n-h(n)+1)/2), select(isprime, [$1..1000])); # Peter Luschny, Jul 26 2017
MATHEMATICA
Function[s, Keys@ KeySelect[s, AllTrue[{#, Lookup[s, #]}, PrimeQ] &]]@ MapIndexed[First[#2] - 1 -> #1 &, LinearRecurrence[{4, -7, 8, -4}, {0, 1, 4, 7}, 7000]] (* Michael De Vlieger, Jul 26 2017 *)
PROG
(PARI) isprime(([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -4, 8, -7, 4]^n*[0; 1; 4; 7])[1, 1])
CROSSREFS
Cf. A215458.
Sequence in context: A158361 A342692 A048184 * A163420 A155489 A194099
KEYWORD
nonn,more
AUTHOR
Paul S. Vanderveen, Jul 25 2017
STATUS
approved