The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290283 Primes p such that A215458(p) is prime. 0
 3, 5, 7, 11, 17, 19, 23, 101, 107, 109, 113, 163, 283, 311, 331, 347, 359, 701, 1153, 1597, 1621, 2063, 2437, 2909, 3319, 6011, 12829, 46147, 46471, 74219, 112297, 128411, 178693, 223759, 268841, 407821, 526763, 925391, 927763 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Primes p such that (2^p - (1/2 - (i * sqrt(7))/2)^p - (1/2 + (i * sqrt(7))/2)^p + 1)/2 is prime. It is conjectured that there are infinitely many terms. LINKS Table of n, a(n) for n=1..39. EXAMPLE A215458(3) = 7, A215458(5) = 11, A215458 (7) = 71 are all primes, hence 3, 5, 7 are in this sequence. MAPLE h := proc(n) option remember; `if`(n=0, 2, `if`(n=1, 1, h(n-1)-2*h(n-2))) end: select(n->isprime((2^n-h(n)+1)/2), select(isprime, [\$1..1000])); # Peter Luschny, Jul 26 2017 MATHEMATICA Function[s, Keys@ KeySelect[s, AllTrue[{#, Lookup[s, #]}, PrimeQ] &]]@ MapIndexed[First[#2] - 1 -> #1 &, LinearRecurrence[{4, -7, 8, -4}, {0, 1, 4, 7}, 7000]] (* Michael De Vlieger, Jul 26 2017 *) PROG (PARI) isprime(([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -4, 8, -7, 4]^n*[0; 1; 4; 7])[1, 1]) CROSSREFS Cf. A215458. Sequence in context: A158361 A342692 A048184 * A163420 A155489 A194099 Adjacent sequences: A290280 A290281 A290282 * A290284 A290285 A290286 KEYWORD nonn,more AUTHOR Paul S. Vanderveen, Jul 25 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 05:34 EDT 2024. Contains 372728 sequences. (Running on oeis4.)