

A048184


Primes with nontrivial omnipower group.


4



3, 5, 7, 11, 17, 19, 23, 47, 59, 83, 107, 163, 167, 179, 227, 251, 257, 263, 347, 359, 383, 467, 479, 487, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1459, 1487, 1523, 1619, 1823, 1907, 2027, 2039, 2063, 2099, 2207
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

k is an omnipower of odd prime p if k is an nth power (mod p) for all 1 <= n < (p1)/2.
Nonzero omnipowers of p form a subgroup of the multiplicative group mod p.
Primes of form 2p^k+1, p prime, k >= 0. That is, primes p such that (p1)/2 is a prime power (A000961).


LINKS



PROG

(PARI) isA048184(n) = (n==3)  (isprime(n) && (n>2) && isprimepower((n1)/2))


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



STATUS

approved



