The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A127913 Least k >= 0 such that A001597(n)+k is an even semiprime. 3
 3, 0, 2, 1, 6, 1, 7, 2, 2, 9, 10, 1, 6, 1, 9, 6, 2, 9, 6, 2, 1, 11, 6, 9, 2, 3, 1, 22, 5, 18, 2, 9, 10, 1, 18, 5, 10, 1, 14, 13, 6, 18, 5, 18, 1, 10, 15, 13, 10, 1, 18, 25, 26, 2, 9, 6, 1, 14, 6, 7, 9, 9, 2, 1, 18, 1, 18, 2, 9, 2, 21, 9, 6, 5, 22, 11, 1, 2, 1, 18, 5, 10, 1, 2, 13, 42, 1, 18, 5, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS EXAMPLE A001597(5) = 16. Among 16+0 = 16, 16+1 = 17, 16+2 = 18 = 2*3*3, 16+3 = 19, 16+4 = 20 = 2*2*5, 16+5 = 21 = 3*7 there is no even semiprime, but 16+6 = 22 = 2*11 is an even semiprime. Hence a(5) = 6. A001597(14) = 121. 121+0 = 121 = 11*11 is not even, but 121+1 = 122 = 2*61 is an even semiprime. Hence a(14) = 1. PROG (MAGMA) PP:=[1] cat [ n: n in [2..5184] | IsPower(n) ]; [ k: p in PP | exists(k) {x: x in [0..100000] | IsEven(p+x) and IsPrime((p+x) div 2) } ]; /* Klaus Brockhaus, Apr 09 2007 */ CROSSREFS Cf. A001597 (perfect powers). Sequence in context: A034389 A084196 A295041 * A135991 A331422 A279631 Adjacent sequences:  A127910 A127911 A127912 * A127914 A127915 A127916 KEYWORD easy,nonn AUTHOR Giovanni Teofilatto, Apr 06 2007 EXTENSIONS Edited, corrected and extended by Klaus Brockhaus, Apr 09 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 17:08 EST 2021. Contains 349445 sequences. (Running on oeis4.)