login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279678
Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 7/4.
3
1, -3, 4, -4, 5, -9, 16, -24, 34, -52, 84, -132, 200, -304, 472, -736, 1136, -1744, 2688, -4160, 6432, -9920, 15296, -23616, 36480, -56320, 86912, -134144, 207104, -319744, 493568, -761856, 1176064, -1815552, 2802688, -4326400, 6678528, -10309632, 15915008
OFFSET
0,2
COMMENTS
If n >=18, then 32 divides a(n).
FORMULA
G.f.: 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 7/4.
G.f.: (1 - x) (1 - x^4)/(1 + 2 x + 2 x^2 + 2 x^3).
MATHEMATICA
z = 50; f[x_] := f[x] = Sum[Floor[(7/4)*(k + 1)] x^k, {k, 0, z}]; f[x]
CoefficientList[Series[1/f[x], {x, 0, z}], x]
CROSSREFS
Sequence in context: A051665 A028263 A059179 * A222283 A336094 A182487
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Dec 18 2016
STATUS
approved