login
A182487
Nextprime(F(n)) - prevprime(F(n)), where F(n) is the n-th Fibonacci number.
1
3, 4, 4, 6, 4, 6, 6, 14, 10, 10, 6, 6, 8, 18, 12, 24, 16, 10, 6, 12, 30, 12, 24, 42, 30, 24, 60, 24, 30, 34, 30, 36, 46, 12, 36, 18, 34, 24, 24, 30, 36, 52, 72, 16, 22, 48, 44, 50, 34, 20, 20, 28, 44, 50, 40, 92, 60, 86, 16, 52, 48, 66, 46, 168, 50, 174, 36
OFFSET
4,1
COMMENTS
Smallest prime following Fibonacci(n) minus largest prime immediately preceding Fibonacci(n). Starting from Fibonacci(4), because for n<4 there is no prime preceding Fibonacci(n).
LINKS
FORMULA
a(n) = A014208(n+4) - A180422(n).
EXAMPLE
a(0) = A014208(4) - A180422(0) = 5 - 2 = 3,
a(7) = A014208(11) - A180422(7) = 97-83 = 14.
MAPLE
a:= n-> (f-> nextprime(f)-prevprime(f))(combinat[fibonacci](n)):
seq(a(n), n=4..100); # Alois P. Heinz, Jul 29 2015
MATHEMATICA
Table[f = Fibonacci[n]; NextPrime[f] - NextPrime[f, -1], {n, 4, 100}] (* T. D. Noe, May 02 2012 *)
CROSSREFS
Cf. A079677 (distance from F(n) to the nearest prime).
Sequence in context: A279678 A222283 A336094 * A309530 A341933 A061117
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, May 02 2012
STATUS
approved