login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061117
Maximum number of divisors for any composite between prime(n) and prime(n+1).
3
3, 4, 4, 6, 5, 6, 6, 8, 8, 9, 8, 8, 6, 10, 8, 12, 8, 8, 12, 8, 10, 12, 12, 9, 8, 8, 12, 10, 16, 8, 12, 8, 15, 12, 12, 12, 8, 16, 10, 18, 8, 14, 9, 12, 16, 16, 12, 12, 8, 12, 20, 8, 18, 12, 16, 16, 12, 16, 8, 18, 18, 12, 16, 12, 16, 20, 12, 12, 12, 8, 24, 12, 16, 12, 16, 18, 15, 16, 12
OFFSET
2,1
LINKS
Michael De Vlieger, Table of n, a(n) for n = 2..10000 (terms up to n = 1000 by Harry J. Smith)
FORMULA
a(n) = Max{d(c); p(n+1) > c > p(n)}, c is composite, p(n) is the n-th prime and d=A000005().
EXAMPLE
p(30)=113 is followed by 13 composites; numbers of divisors are {8, 4, 6, 6, 4, 4, 16, 3, 4, 4, 6, 4, 12}; the smallest is 4=a(30) and the largest is 16.
MATHEMATICA
Max /@ DivisorSigma[0, Select[SplitBy[Range@ Prime@ 81, PrimeQ], CompositeQ@ First@ # &]] (* Michael De Vlieger, Nov 02 2017 *)
PROG
(PARI) { n=-1; q=3; forprime (p=5, prime(1003), a=0; for (i=q + 1, p - 1, a=max(numdiv(i), a)); q=p; write("b061117.txt", n++, " ", a) ) } \\ Harry J. Smith, Jul 18 2009
CROSSREFS
Sequence in context: A182487 A309530 A341933 * A255171 A323712 A215250
KEYWORD
nonn
AUTHOR
Labos Elemer, May 29 2001
STATUS
approved