login
A061114
Concatenation of first n Bell numbers (starting with A000110(1)).
0
1, 12, 125, 12515, 1251552, 1251552203, 1251552203877, 12515522038774140, 1251552203877414021147, 1251552203877414021147115975, 1251552203877414021147115975678570
OFFSET
1,2
COMMENTS
A000110(0) is omitted here in contrast to A132938. - Georg Fischer, Dec 29 2022
REFERENCES
Amarnath Murthy, Generalization of Partition function, introducing Smarandache Factor partition, Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
Amarnath Murthy, A general result on the Smarandache Star function, Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
Amarnath Murthy, Properties of Smarandache Star Triangle, Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
EXAMPLE
a(5) = 1251552, since 1, 2, 5, 15, 52 are the first five bell numbers.
MAPLE
with(combinat, bell): for n from 1 to 20 do for k from 1 to n do printf(`%d`, bell(k)) od: printf(`, `): od:
MATHEMATICA
Module[{nn=20, bn}, bn=BellB[Range[nn]]; Table[FromDigits[ Flatten[ IntegerDigits/@ Take[bn, n]]], {n, nn}]] (* Harvey P. Dale, Aug 02 2016 *)
CROSSREFS
Sequence in context: A356822 A178626 A223322 * A015792 A343769 A348463
KEYWORD
nonn,base,less
AUTHOR
Amarnath Murthy, Apr 21 2001
EXTENSIONS
More terms from James A. Sellers, Apr 23 2001
Definition amended by Georg Fischer, Dec 29 2022
STATUS
approved