Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Dec 30 2022 02:26:52
%S 1,12,125,12515,1251552,1251552203,1251552203877,12515522038774140,
%T 1251552203877414021147,1251552203877414021147115975,
%U 1251552203877414021147115975678570
%N Concatenation of first n Bell numbers (starting with A000110(1)).
%C A000110(0) is omitted here in contrast to A132938. - _Georg Fischer_, Dec 29 2022
%D Amarnath Murthy, Generalization of Partition function, introducing Smarandache Factor partition, Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
%D Amarnath Murthy, A general result on the Smarandache Star function, Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
%D Amarnath Murthy, Properties of Smarandache Star Triangle, Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
%e a(5) = 1251552, since 1, 2, 5, 15, 52 are the first five bell numbers.
%p with(combinat, bell): for n from 1 to 20 do for k from 1 to n do printf(`%d`, bell(k)) od: printf(`,`): od:
%t Module[{nn=20,bn},bn=BellB[Range[nn]];Table[FromDigits[ Flatten[ IntegerDigits/@ Take[bn,n]]],{n,nn}]] (* _Harvey P. Dale_, Aug 02 2016 *)
%Y Cf. A000110, A132938.
%K nonn,base,less
%O 1,2
%A _Amarnath Murthy_, Apr 21 2001
%E More terms from _James A. Sellers_, Apr 23 2001
%E Definition amended by _Georg Fischer_, Dec 29 2022