login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178626
Convolution of Pell(n) and 10^n.
1
1, 12, 125, 1262, 12649, 126560, 1265769, 12658098, 126581965, 1265822028, 12658226021, 126582274070, 1265822774161, 12658227822392, 126582278418945, 1265822784660282, 12658227847739509, 126582278480139300
OFFSET
1,2
COMMENTS
Row sums of:
1
10....2
100...20...5
1000..200..50..12
10000.2000.500.120.29
or:
1
10....2
100...21...4
1000..210..44..8
10000.2100.441.92.16
or without the first column:
1
10
100......1
1000.....12
10000....124....1
100000...1248...14
FORMULA
a(n) = 10*a(n-1) + Pell(n) with a(1)= Pell(1) = 1.
From R. J. Mathar, May 31 2010: (Start)
a(n) = +12*a(n-1) -19*a(n-2) -10*a(n-3).
G.f.: x/ ( (10*x-1)*(x^2+2*x-1) ). (End)
a(n) = (2^(3+n)*5^(1+n) + (1-sqrt(2))^n*(-20+11*sqrt(2)) - (1+sqrt(2))^n*(20+11*sqrt(2))) / 316. - Colin Barker, Jan 29 2019
MATHEMATICA
LinearRecurrence[{12, -19, -10}, {1, 12, 125}, 30] (* G. C. Greubel, Jan 28 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec( x/((10*x-1)*(x^2+2*x-1)) ) \\ G. C. Greubel, Jan 28 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( x/((10*x-1)*(x^2+2*x-1)) )); // G. C. Greubel, Jan 28 2019
(Sage) a=(x/((10*x-1)*(x^2+2*x-1))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jan 28 2019
(GAP) a:=[1, 12, 125];; for n in [4..30] do a[n]:=12*a[n-1]-19*a[n-2] - 10*a[n-3]; od; a; # G. C. Greubel, Jan 28 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mark Dols, May 31 2010
EXTENSIONS
a(10), a(11) corrected and sequence extended by R. J. Mathar, May 31 2010
STATUS
approved