OFFSET
1,2
COMMENTS
Row sums of:
1
10....2
100...20...5
1000..200..50..12
10000.2000.500.120.29
or:
1
10....2
100...21...4
1000..210..44..8
10000.2100.441.92.16
or without the first column:
1
10
100......1
1000.....12
10000....124....1
100000...1248...14
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..995
Index entries for linear recurrences with constant coefficients, signature (12,-19,-10).
FORMULA
a(n) = 10*a(n-1) + Pell(n) with a(1)= Pell(1) = 1.
From R. J. Mathar, May 31 2010: (Start)
a(n) = +12*a(n-1) -19*a(n-2) -10*a(n-3).
G.f.: x/ ( (10*x-1)*(x^2+2*x-1) ). (End)
a(n) = (2^(3+n)*5^(1+n) + (1-sqrt(2))^n*(-20+11*sqrt(2)) - (1+sqrt(2))^n*(20+11*sqrt(2))) / 316. - Colin Barker, Jan 29 2019
MATHEMATICA
LinearRecurrence[{12, -19, -10}, {1, 12, 125}, 30] (* G. C. Greubel, Jan 28 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec( x/((10*x-1)*(x^2+2*x-1)) ) \\ G. C. Greubel, Jan 28 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( x/((10*x-1)*(x^2+2*x-1)) )); // G. C. Greubel, Jan 28 2019
(Sage) a=(x/((10*x-1)*(x^2+2*x-1))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jan 28 2019
(GAP) a:=[1, 12, 125];; for n in [4..30] do a[n]:=12*a[n-1]-19*a[n-2] - 10*a[n-3]; od; a; # G. C. Greubel, Jan 28 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mark Dols, May 31 2010
EXTENSIONS
a(10), a(11) corrected and sequence extended by R. J. Mathar, May 31 2010
STATUS
approved