OFFSET
1,3
COMMENTS
a(n) is (-1)^C(n,2) times the Hankel transform of the sequence with g.f. 1/(1-x^2/(1-3x^2/(1+(11/9)x^2/(1-(114/121)x^2/(1+(2739/1444)x^2/(1-... where 3,-11/9,141/121,-2739/1444... are the x-coordinates of the multiples of z=(0,0) on E:y^2+2xy-y=x^3-x.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..118 (offset adapted by Georg Fischer, Jan 31 2019)
FORMULA
a(n) = (a(n-1)*a(n-3) + 3*a(n-2)^2)/a(n-4), n>3.
a(n) = -a(-n) for all n in Z. - Michael Somos, Sep 17 2018
EXAMPLE
G.f. = x + x^2 - 3*x^3 + 11*x^4 + 38*x^5 + 249*x^6 + ... - Michael Somos, Sep 17 2018
MATHEMATICA
RecurrenceTable[{a[n] == (a[n-1]*a[n-3] +3*a[n-2]^2)/a[n-4], a[0] == 1, a[1] == 1, a[2] == -3, a[3] == 11}, a, {n, 0, 30}] (* G. C. Greubel, Sep 16 2018 *)
PROG
(PARI) a(n)=local(E, z); E=ellinit([2, 0, -1, -1, 0]); z=ellpointtoz(E, [0, 0]); round(ellsigma(E, n*z)/ellsigma(E, z)^(n^2))
(PARI) m=30; v=concat([1, 1, -3, 11], vector(m-4)); for(n=5, m, v[n] = ( v[n-1]*v[n-3] + 3*v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Sep 16 2018
(Magma) I:=[1, 1, -3, 11]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + 3*Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Sep 16 2018
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 31 2010
EXTENSIONS
Corrected by Paul Barry, Jun 01 2010
Offset changed to 1 by Michael Somos, Sep 17 2018
STATUS
approved