login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178624
A (1,3) Somos-4 sequence associated to the elliptic curve E: y^2 + 2*x*y - y = x^3 - x.
3
1, 1, -3, 11, 38, 249, -2357, 8767, 496035, -3769372, -299154043, -12064147359, 632926474117, -65604679199921, -6662962874355342, -720710377683595651, 285131375126739646739, 5206174703484724719135
OFFSET
1,3
COMMENTS
a(n) is (-1)^C(n,2) times the Hankel transform of the sequence with g.f. 1/(1-x^2/(1-3x^2/(1+(11/9)x^2/(1-(114/121)x^2/(1+(2739/1444)x^2/(1-... where 3,-11/9,141/121,-2739/1444... are the x-coordinates of the multiples of z=(0,0) on E:y^2+2xy-y=x^3-x.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..118 (offset adapted by Georg Fischer, Jan 31 2019)
FORMULA
a(n) = (a(n-1)*a(n-3) + 3*a(n-2)^2)/a(n-4), n>3.
a(n) = -a(-n) for all n in Z. - Michael Somos, Sep 17 2018
EXAMPLE
G.f. = x + x^2 - 3*x^3 + 11*x^4 + 38*x^5 + 249*x^6 + ... - Michael Somos, Sep 17 2018
MATHEMATICA
RecurrenceTable[{a[n] == (a[n-1]*a[n-3] +3*a[n-2]^2)/a[n-4], a[0] == 1, a[1] == 1, a[2] == -3, a[3] == 11}, a, {n, 0, 30}] (* G. C. Greubel, Sep 16 2018 *)
PROG
(PARI) a(n)=local(E, z); E=ellinit([2, 0, -1, -1, 0]); z=ellpointtoz(E, [0, 0]); round(ellsigma(E, n*z)/ellsigma(E, z)^(n^2))
(PARI) m=30; v=concat([1, 1, -3, 11], vector(m-4)); for(n=5, m, v[n] = ( v[n-1]*v[n-3] + 3*v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Sep 16 2018
(Magma) I:=[1, 1, -3, 11]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + 3*Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Sep 16 2018
CROSSREFS
Sequence in context: A289989 A295263 A018961 * A027528 A192528 A112674
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 31 2010
EXTENSIONS
Corrected by Paul Barry, Jun 01 2010
Offset changed to 1 by Michael Somos, Sep 17 2018
STATUS
approved