Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 08 2022 08:45:54
%S 1,1,-3,11,38,249,-2357,8767,496035,-3769372,-299154043,-12064147359,
%T 632926474117,-65604679199921,-6662962874355342,-720710377683595651,
%U 285131375126739646739,5206174703484724719135
%N A (1,3) Somos-4 sequence associated to the elliptic curve E: y^2 + 2*x*y - y = x^3 - x.
%C a(n) is (-1)^C(n,2) times the Hankel transform of the sequence with g.f. 1/(1-x^2/(1-3x^2/(1+(11/9)x^2/(1-(114/121)x^2/(1+(2739/1444)x^2/(1-... where 3,-11/9,141/121,-2739/1444... are the x-coordinates of the multiples of z=(0,0) on E:y^2+2xy-y=x^3-x.
%H G. C. Greubel, <a href="/A178624/b178624.txt">Table of n, a(n) for n = 1..118</a> (offset adapted by _Georg Fischer_, Jan 31 2019)
%F a(n) = (a(n-1)*a(n-3) + 3*a(n-2)^2)/a(n-4), n>3.
%F a(n) = -a(-n) for all n in Z. - _Michael Somos_, Sep 17 2018
%e G.f. = x + x^2 - 3*x^3 + 11*x^4 + 38*x^5 + 249*x^6 + ... - _Michael Somos_, Sep 17 2018
%t RecurrenceTable[{a[n] == (a[n-1]*a[n-3] +3*a[n-2]^2)/a[n-4], a[0] == 1, a[1] == 1, a[2] == -3, a[3] == 11}, a, {n, 0, 30}] (* _G. C. Greubel_, Sep 16 2018 *)
%o (PARI) a(n)=local(E,z);E=ellinit([2,0,-1,-1,0]);z=ellpointtoz(E,[0,0]); round(ellsigma(E,n*z)/ellsigma(E,z)^(n^2))
%o (PARI) m=30; v=concat([1,1,-3,11], vector(m-4)); for(n=5, m, v[n] = ( v[n-1]*v[n-3] + 3*v[n-2]^2)/v[n-4]); v \\ _G. C. Greubel_, Sep 16 2018
%o (Magma) I:=[1,1,-3,11]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + 3*Self(n-2)^2)/Self(n-4): n in [1..30]]; // _G. C. Greubel_, Sep 16 2018
%K easy,sign
%O 1,3
%A _Paul Barry_, May 31 2010
%E Corrected by _Paul Barry_, Jun 01 2010
%E Offset changed to 1 by _Michael Somos_, Sep 17 2018