login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A279775
Numbers k such that the sum of digits of 5k equals 10.
9
11, 29, 38, 47, 56, 65, 74, 83, 92, 101, 110, 128, 146, 164, 182, 209, 218, 227, 236, 245, 254, 263, 272, 281, 290, 308, 326, 344, 362, 380, 407, 416, 425, 434, 443, 452, 461, 470, 488, 506, 524, 542, 560, 605, 614, 623, 632, 641, 650, 668, 686, 704, 722, 740, 803, 812, 821, 830, 848, 866, 884, 902, 920
OFFSET
1,1
COMMENTS
Inspired by A088407 = A069540/5 and A279769 (the analog for 9).
LINKS
MATHEMATICA
Select[Range@ 920, Total@ IntegerDigits[5 #] == 10 &] (* Michael De Vlieger, Dec 23 2016 *)
PROG
(PARI) select( is(n)=sumdigits(5*n)==10, [0..999])
(Python)
def ok(n): return sum(map(int, str(5*n))) == 10
print([k for k in range(921) if ok(k)]) # Michael S. Branicky, Nov 29 2021
CROSSREFS
Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Sequence in context: A360181 A092194 A134307 * A211191 A353043 A350420
KEYWORD
nonn,easy,base
AUTHOR
M. F. Hasler, Dec 23 2016
STATUS
approved