Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Oct 04 2020 06:57:49
%S 1,1,1,4,10,25,210,978,2336,25265,361424,1557752,-1098528,140915385,
%T 2093367328,10484632486,133131785728,-1343478380255,-8738565516288,
%U 1790935681747980,3245598828836864,-592809746388403495,6832010190766985216,179327221659613996634,-5310378915096702812160
%N Expansion of e.g.f. Product_{k>0} (1 + sin(x)^k / k).
%F E.g.f.: exp( Sum_{i>0} Sum_{j>0} (-1)^(i+1)*sin(x)^(i*j)/(i*j^i) ).
%t max = 24; Range[0, max]! * CoefficientList[Series[Product[1 + Sin[x]^k/k, {k, 1, max}], {x, 0, max}], x] (* _Amiram Eldar_, Oct 03 2020 *)
%o (PARI) N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1+sin(x)^k/k)))
%o (PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(i=1, N, sum(j=1, N\i, (-1)^(i+1)*sin(x)^(i*j)/(i*j^i))))))
%Y Cf. A007838, A335629, A335635, A335638, A335644.
%K sign
%O 0,4
%A _Seiichi Manyama_, Oct 03 2020